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Risk indicators used in the context of spatial and spatio-temporal analysis are commonly re-
lated to the structure of excursion sets defined by threshold exceedances. In Madrid, Angulo and
Mateu (2011), marked point process techniques are applied to study pattern-related characteristics
of such sets depending on the underlying process properties such as local variability and dependence
ranges. In a previous paper, Angulo and Madrid (2010) analyze the effect of deformation and blurring
transformations on geometrical-probabilistic characteristics of spatial and spatio-temporal threshold
exceedance sets under different scenarios. These types of transformations are meaningful both from
physical and methodological points of view in a broad variety of fields of application. In this work,
based on simulated realizations from a flexible model family, both approaches are combined in the
study of structural changes in excursion sets -viewed as a collection of spatially distributed isolated
critical events defined by connected components- derived from deformation and blurring transfor-
mations. Specifically, features such as aggregation/inhibition distribution patterns, as well as local
anisotropy, are investigated in relation to the local contraction/dilation effects of deformation, and
smoothing properties of blurring.

Introduction

Risk indicators used in applications are usually formulated in relation to the possibility of oc-
currence of extremal events defined by exceedances over critical thresholds. Structural characteristics
of threshold exceedance sets as, for example, recurrence and persistence, are intrinsically related to
the properties of the generating model. These properties can be modified by transformations such as
deformation and blurring, meaningful for a variety of problems and applications. Deformation can be
used as an approach to define flexible classes of non-homogeneous random fields from homogeneous
ones (among others, see Sampsom and Guttorp 1992; Anderes and Stein 2008; and the references
therein) or in warping techniques as a mean to approximate heterogeneously behaved processes in
terms of simpler homogeneous models (see, for example, Glasbey and Mardia 1998, 2001; Mardia et
al. 2006). On the other hand, the blurring is a smoothing operator which has been used, in the
spatio-temporal context, to represent the diffusive transmission of information between different times
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(see Brown et al. 2000).
In Angulo and Madrid (2010), the effect of such types of transformations of threshold exceedance

sets on the geometrical characteristics, namely the Euler characteristic and hypervolume, is studied in
relation to fractality and long range dependence parameters, as well as on the threshold specifications.
These geometrical characteristics have special interest to define risk indicators since, under suitable
conditions, the Euler characteristic can be used to approximate the probability of having at least one
point in a critical state, whilst by means of the hypervolume it is possible to compute the probability
that a generic point of the domain exceeds the threshold (see Adler and Taylor, 2007).

Given the fragmented nature of the excursion sets, a complementary analysis based on marked
point process techniques to examine structural heterogeneities is considered in Madrid, Angulo and
Mateu (2011). There, heterogeneities in size variations and spatial distribution (clustering/inhibition)
patterns of connected components, as well as certain characteristics related to local anisotropy are
investigated again depending on underlying specific characteristics.

Here we combine both approaches to analyze how the local contraction/dilation properties of
deformation, and smoothing effect of blurring change the characteristics of point patterns defined by
the connected components in the transformed threshold exceedance sets, under different scenarios
regarding the properties of underlying model and the threshold specifications.

Methodology and simulations

Let X be a spatial random field on D ⊂ R2. Let Φ : D → D′ ⊂ R2 be a spatial deformation,
such that Φ is a C1-diffeomorphism with positive Jacobian, |JΦ| > 0. The deformed random field
X[Φ] is defined by

X[Φ](s) = X(Φ−1(s)), ∀s ∈ D′

Now we assume that the random field X is defined on the whole space R2, and let h : R2 × R2 → R
be a kernel such that h ≥ 0 and

∫
R2 h(s, s′)ds′ = 1, ∀s ∈ R2. The blurred random field X[h] is

formulated as
X[h](s) = h ∗X(s) =

∫

R2

h(s, s′)X(s′)ds′

In this paper we consider simulated realizations on the square [−400, 400]2 of Cauchy random
fields defined by the homogeneous and isotropic covariance function C(r) = σ2

X(1+rα)−β/α, α ∈ (0, 2]
and β > 0. The parameter α determines the fractal dimension, D = n+1−α/2 (for a random field on
Rn), and independently, for β ∈ (0, 1) the process has long memory with Hurst coefficient H = 1−β/2
(see Gneiting and Schlather, 2004). In addition, we define two spatial deformations, Φ1 and Φ2, in
terms of landmark-based thin-plate splines, to have different contraction and dilation properties, par-
ticularly at the central area of the squared domain considered. Specifically, in each of both cases,
sixteen landmark points are considered, sharing a subset of eight boundary anchor points (that is,
points forced to remain fixed under the deformation), consisting of the four corners and the four edge
middle points, to prevent significant distortion of the square borderlines. For Φ1, the eight interior
points (0,−200), (0, 200), (−200, 0), (200, 0), (−100,−100), (100, 100), (−100, 100), and (100,−100)
are forced to move half distance towards the square central point, i.e. the origin (0,0); that is, they are
respectively transformed into the points (0,−100), (0, 100), (−100, 0), (100, 0), (−50,−50), (50, 50),
(−50, 50), (50,−50). On the other hand, Φ2 is based on the reciprocal assignments. For the blurring
a Gaussian kernel h with variance σ2

h = 0.5 has been used.

A point process is a stochastic model governing the locations of events {xi} in some set D,
where D is considered a bounded region in R2 (Stoyan et al. 1995). If locations contain associated
measurements or marks, the point process is referred to as a marked point process. Considering a fixed
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threshold, we can build a spatial point pattern through the centroids of the connected components
defining the excursion sets. Associating the size and orientation as marks, marked point processes
are defined. To illustrate the effect of the two spatial deformations and the blurring kernel previously
defined, Figure 1 displays the excursion sets based on simulated realizations of X in plot (a), X[h] in
plot (b) and X[Φ1] and X[Φ2] in plots (c) and (d) respectively, for the threshold corresponding to the
95th percentile of the simulated realization of X and considering σ2

X = 0.1, α = 2, and β = 0.1.

(a) (b)

(c) (d)

Figure 1: Excursion sets for the threshold corresponding to percentile 95th of the original

realization based on simulated realizations of: (a) X; (b) X[h]; (c) X[Φ1]; (d) X[Φ2]. Black

dots represent centroids of connected components.

The behaviour of both deformations, Φ1 and Φ2, varies within the domain and with the local
properties of contraction or dilation. Thus, hereafter we just focus on the central subregion [−100, 100]2

where deformations Φ1 and Φ2 show properties of contraction and dilation, respectively.
In this work, thresholds are defined based on the empirical distribution functions of the original

simulated realizations. It must be noted that, in relation to blurring, since it affects the scale of
variation of random field, different results would be obtained if thresholds would be determined from
the empirical distribution functions of the transformed realizations.

Tables 1 and 2 contain the mean number and size, respectively, of connected components for
different crossed combinations of parameter values and specifications of the threshold computed from
15 simulated realizations of the random field X, X[Φ1], X[Φ2] and X[h]. In the deformation case,
the increase/decrease of the number of connected components (number of extreme events) is directly
related to the way the area of the region is affected by contraction or dilation. However, the smoothing
effect due to blurring produces both a decrease in the disaggregation rate of the threshold exceedance
sets, and in the variation range, which depends on the local characteristics of the random field.
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90th percentile of X
X X[Φ1] X[Φ2] X[h]

α = 0.5, β = 0.1 737.71 789.28 195.26 158.13
α = 2, β = 0.9 743.33 1130.9 187.26 238.4

95th Percentile of X
X X[Φ1] X[Φ2] X[h]

α = 0.5, β = 0.1 549.06 601.71 141.93 91.93
α = 2, β = 0.9 541.13 791.93 135.06 136.8

97th percentile of X
X X[Φ1] X[Φ2] X[h]

α = 0.5, β = 0.1 406.86 438.33 103.53 57.86
α = 2, β = 0.9 397.13 564.93 100.06 82.8

Table 1: Mean number of connected components for different crossed combinations of

parameter values and threshold specifications

90th percentile of X
X X[Φ1] X[Φ2] X[h]

α = 0.5, β = 0.1 5.27 4.77 21.40 15.79
α = 2, β = 0.9 5.37 3.29 21.71 9.85

95th percentile of X
X X[Φ1] X[Φ2] X[h]

α = 0.5, β = 0.1 3.64 3.41 14.32 10.49
α = 2, β = 0.9 3.69 2.33 14.92 6.43

97th percentile of X
X X[Φ1] X[Φ2] X[h]

α = 0.5, β = 0.1 2.94 2.81 11.56 8.01
α = 2, β = 0.9 3.01 1.97 11.91 5.17

Table 2: Mean size of connected components for different crossed combinations of pa-

rameter values and threshold specifications

It is important to note that if the threshold is fixed, the number and size of the connected
components of the excursion sets based on original simulated realizations are similar for the two
models considered in Tables 1 and 2. However, they are clearly different when based on blurred
realizations.

To study the effect of transformations considered on the distribution patterns we have computed
the mean inhomogeneous L-functions for different point processes based on 15 realizations. In Figure
2 we represent the mean L-functions of the original and transformed point patterns for the 90th and
97th percentiles corresponding to the model with parameter values α = 2 and β = 0.1. The most
significant differences regarding the influence of the threshold specifications are observed in the cases
of dilation and blurring.
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Figure 2: L(r) − r function for the point processes defined by centroids of connected

components, for the excursion sets corresponding to threshold associated to percentile

90th (left) and 97th (right) based on the realizations of X (blue), X[Φ1] (red), X[Φ2]
(green), and X[h] (light blue).
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