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Introduction
We consider heavy-tailed distributions F' defined by
F(x)=1—F(z) =2 *Lp(z), a >0,

where Ly is slowly varying. The most popular estimator of the tail index «, introduced by Hill (1975),
is given by

1 b X 1
SH) (1) — = An—itln — _
An (k) = k ;1 log ( o > , for k=1,...,n—1,

where v = é and Xq, < X9, < .. < X, , are order statistics based on an iid sample. For k — oo,
n — oo, k/n — 0, @,SH) is consistent (Mason 1982) and asymptotically normal (under additional
regularity conditions). The estimator performs well in the class of Pareto-like distributions (see e.g.
Peng 1998). Outside this class the bias-variance tradeoff can be addressed by choosing a sequence

P! that minimizes the AMSE (Hall 1982). However, k%' is only asymptotically optimal, providing
little guidance for finite samples (Drees et al. 2000). Moreover, using ky " leads to a slower rate of

convergence compared to parametric estimation. (cf. Beran and Schell 2010).
Tail Index Estimation by an exponential family of Pareto-Spline distributions

The new approach is based on an exponential family generated by a hyperbola and a truncated
series expansion. The idea is related to Neyman (1937), Stone and Koo (1986), Clutton-Brock (1990).

Let - )
exp(y_;2 0;B;(x))z™""

= fexp(zz-)il Qij(x))x—a—ldx7

where (B;);en is a sequence of basis functions with compact support [1, W] and 6 = («,01,...) € © =

f(x;0)

(x>1, a>0),

(0,00) x RN an infinite dimensional parameter vector consisting of the tail index and the coefficients
of the basis functions.

We will focus on cubic B-splines as basis functions, since for a given compact interval [a, b] € R, there
exists some constant c3 such that for all sequences of knots t = (t;)7F3 with

ti=te=tz3=a<ty < - <b=tyy1 =tp12="1n13

and for all g € 0(2)([a, b)),
dist(g, Sa4) < cslt|?||D?gll,
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where Ss¢ is the linear space of cubic B-splines associated with the knot sequence t, dist(g,S) =
infres{llg — fII}, |[f]| := max,epqp [f(2)|, D is the differential operator and [t| = max; At; (de Boor
2001). Under the regularity conditions

e.¢] e} (o.¢]
‘9]| < 90, ZHJ < 00, ZHJBJ(W) =0, ZQJBé(W =
7j=1 j=1 Jj=1
(1) 00
and /exp ZQij(x) 7 tr < oo

f(x;0) is a well defined, smooth density. Considering the restricted parameter space ©®) = (0, 00) xR?,
we obtain

fa; Z —log(x)) — A(6) | h(z),

where h‘('r) = %7 0(}7) = (O[, 917 s 79p) S C._.)(P) and
. 1
AOP) = log / Z —log(x)) Edm .

F(OW) = {F(x;0" / fy;0)dy, 6P € 6P}

is a regular exponential family, which will be referred to as the family of Pareto-Spline distributions.
The statistic

Thus,

T(x) = (=log(x), Bi(x), ..., By(x))
is sufficient and F(#(®)) is complete. We define an M-functional T'(F(x;6®))) associated with

—log(x) + [log(z) f(z;0®)dx
@ZJ(ZE;G(I’)) = Vlog f(;p;g(p)) _ By(x) — fBl(x)f($;9(p))dx
— [ Bp(z) f(z;0®)da

as the solution t®) of

/Vlog f(x; tPYdF (2;0®)) = 0. (see e.g. Serfling 1980)

The ML-estimator 6 := T(F,(z)) is defined as a solution of

— > log(X;) + n [ log(z) (x;é,gp))dx

Y1 Bi(Xi) —n [ Bi(x)f (x;éy(f)))dx

() / V log f(z; 09))dF, (x) = ~0

oy Bp(X; nfB (x;é,(lp))dx
where F,(x) is the empirical distribution function. Thus, GAT(LP ) results from adjusting the population
moments of —log(X), B1(X),..., Bp(X) to the empirical moments —1 3" | log(X;), £ > | By (X;),
cee % o Bp(X;). Standard arguments imply that é,(lp ) is consistent and asymptotically normal (see
e.g. Bickel and Doksum (1977)) with covariance matrix

. —1
% = (02 )igetopit = (ROP)) = (L),



Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session CPS014) p.4169

where
. ( an cr )
o(p) — P
¢ Covgn(BiX),. By(X) )
9 (p) i 0 w)y. 9 (p) .
a1 = By || 5olog f(:67) ) | s 6 = By | 5-log f(2:67) - 55-log f(2;6%) ) (i=1,....p)

and CO’Ue(p) (Bl(X), ey Bp(X)) == (hi,j)i,j:l,...,p with

0 0
L @)\ . .9
hz,] EG(P) ael(p) IOg f(xa 0 ) a@;p) 10g f(xv 0 )] .

In particular, the asymptotic variance of @5{’ ) is given by

(11)
g2 oo | _ |Covger (Bi(X), . ..., By(X))]
U L] [Ty |

where |] 9((1171))| is the minor of the first element in the Fisher Information matrix I,,). Note that o?;
can be interpreted as the ratio of linear dependence of (—log(X), B1(X),...,By(X)) and linear de-
pendence of (B1(X),...,By(X)).

Asymptotic properties outside the exponential family
Let Fo,(x), (ap > 0) be an arbitrary heavy-tailed distribution with density fo,(x). We define

o) .— arg max Lp, (é(p)>v
i) co® 0

where

Lr(9) = / log f(x: 0)dF ()

is assumed to be strictly concave in 6. The corresponding minimum contrast estimator 9A7(Lp ) is defined
by

A(p) .
6P argrgleaé(LFn(H).

and is asymptotically normal under some regularity conditions. Assuming that the moments of 6’A7(Zp )

converge, the mean squared error can be approximated by
AMSE gy (é) = (ag — a)? + O(n71).

For small and moderate sample sizes, the stability of &, due to the y/n-convergence to « often out-
weighs the lack of consistence. This is illustrated in figure 1.
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Figure 1: (Left) Average Hill estimator (with 95% confidence intervals) as a function of k (black) and &, with W = gz,(0.75)
and 8 equidistant knots together with a 95% confidence interval (blue). (Right) MSE of Hill’s estimator for different values of k
(black) and MSE for &y, (blue), as well as the variances (green) and the squared bias (red) for both estimators.
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