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1. Introduction

In this paper, we consider a modified deepest regression estimator (DRE) in logistic regression

model. We propose an estimator that takes the median of all candidate fits with maximal regression

depth. We compare a modified DRE with the maximum likelihood estimator, Firth’s method, and

the original DRE in logistic regression model by the computer simulations. We show that a modified

DRE is not affected by overlap or complete separation.

Rousseeuw and Hubert (1999) introduced the regression depth method for linear regression

models. Regression depth is defined as the smallest number of residuals that need to change sign.

DRE is defined as the fit which makes regression depth the maximum relative to the data. DRE is

a robust regression estimator and it has high asymptotic efficiency. However, in simple regression,

the performance of DRE is not high in case of small sample size with outliers. We showed that mean

squared error of a modified DRE using median is smaller than that other estimators in small and large

sample size with outliers (Fujiki and Shirahata, 2011).

Moreover, due to the monotone invariance property of regression depth, DRE is invariant to

monotone transformations of the response, though this property does not hold for least squares or

other estimators such as least trimmed squares or S-estimators. Thereby, it is possible to apply DRE

to more general models. In general, the maximum likelihood method is used to estimate regression

parameters in logistic regression model. However, a maximum likelihood estimator does not exist

in case of complete separation or quasi-complete separation. Firth(1993) suggested the method to

remove bias of a maximum likelihood estimator, but this method is not investigated under near

separation. Though Ohkura and Kamakura(2007) discussed the method to approximate an estimator

using Firth’s method to an estimator using the exact logistic regression, DRE is not yet compared

with Firth’s method in logistic regression model. Therefore, we consider that we apply a modified

DRE in logistic regression model, and we also investigate an estimator using Firth’s method and our

DRE under near separation or overlap by the computer simulations.

2. Regression depth

In multiple regression, we want to fit an affine hyperplane of the form g((xi, 1)θ) = θ1xi1 +

· · · + θp−1xi,p−1 + θp to a dataset Zn = {(xi1, · · · , xi,p−1, yi) : i = 1, · · · , n} ⊂ Rp. We denote

the x-part of each data point zi by xi = (xi1, · · · , xi,p−1)
t ∈ Rp−1. A candidate fit is denoted by

θ = (θ1, · · · , θp)t ∈ Rp. The residuals are then denoted by ri(θ) = ri = yi − g((xi, 1)θ).

Definition 1 A candidate fit θ to Zn is called a nonfit iff there exists an affine hyperplane V in

x-space that no xi belongs to V and such that (1) or (2).

ri(θ) = yi − g((xi, 1)θ) > 0 for all xi in one of its open halfspaces(1)

ri(θ) = yi − g((xi, 1)θ) < 0 for all xi in the other open halfspaces.(2)
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Definition 2 The regression depth (rdepth) of a fit θ ∈ Rp relative to a dataset Zn ⊂ Rp is the

smallest number of observations that need to be removed to make θ a nonfit, and is given by

rdepth(θ, Zn) = min
u,v

{♯(ri(θ) ≥ 0 & xt
iu < v) + ♯(ri(θ) ≤ 0 & xt

iu > v)}(3)

where the minimum is over all unit vectors u = (u1, · · · , up−1)
t ∈ Rp−1 and all v ∈ R with xt

iu ̸= v

for all (xt
i, yi) ∈ Zn.

Christmann and Rousseeuw (2001) introduced the regression depth approach for logistic regres-

sion model. Data sets have the form Zn ⊂ Rp where yi ∈ {0, 1} for i = 1, · · · , n. For simplicity, we will

assume that the design matrix has full column rank. Denote the cumulative distribution function fo

the logistic distribution by Λ(t) = 1/[1 + exp(−t)], z ∈ R. The regression depth of a fit invariant with

respect to monotone transformations, though this invariance property does not hold for the objective

function of most regression estimators, such as least squares, least trimmed squares, and S-estimators.

Christmann and Rousseeuw (2001) defined regression depth in logistic regression model from Defini-

tion 2, as follows. Hence, the regression depth is invariant with respect to different codings of the

binary response variable.

Definition 3 The regression depth of fit θ relative to Zn is equal to the regression depth of −θ

relative to the data set Z
′
n = {(xi1, · · · , xi,p−1, 1− yi) : i = 1, · · · , n},

rdepth(θ, Zn) = rdepth(−θ, Z
′
n).(4)

3. Deepest regression estimator

Definition 4 In p dimensions the deepest regression estimator DR(Zn) is defined as the fit θ with

maximal rdepth(θ, Zn),

DR(Zn) = argmax
θ

rdepth(θ, Zn)(5)

where θ maximizing rdepth(θ, Zn) is not necessarily unique.

It suffices to consider all fits through p data points in Definition 4. If several of these fits are tied in the

sense that they have the same maximal regression depth, the deepest regression estimator DR(Zn) is

obtained by taking their average. Note that the average does not necessarily have the maximal depth.

The DRE is now uniquely defined, taking the average does not change the robustness (Aelst et al.,

2002). Moreover, no distributional assumptions are made to define the DRE of dataset.

By the way, θ maximizing rdepth(θ, Zn) is obtained by a straight line passing two data points

in simple regression. Then, an actual estimator is defined as follows.

Definition 5 In a straight line passing two data points of
(
n
2

)
, the deepest regression estimator

DR(Zn) is defined as the maximizing rdepth(θ, Zn) of the line θ1ix + θ2i(i = 1, · · · , k), where k

is the number of straight lines having maximal regression depth.

DR(Zn) = (θ1·, θ2·).

Note that it is not necessarily for a straight line maximizing rdepth(θ, Zn) to pass two data points.

For univariate data, regression depth is

rdepth(θ, Zn) = min(♯{yi ≤ θ}, ♯{yi ≥ θ}),

and so DRE is median. Therefore we can define regression depth in two dimensions as follows.
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Definition 6 In a straight line passing two data points of
(
n
2

)
, the deepest regression estimator

DR(Zn) is defined as the maximizing rdepth(θ, Zn) of the line θ1ix + θ2i(i = 1, · · · , k), where k

is the number of straight lines having maximal regression depth.

DR(Zn) = (med θ1i, med θ2i).

We investigate the performance of the modified deepest regression estimator by simulation studies. A

modified DRE is compared with the original DRE. The results are that mean squared error of our

DRE is smaller than that of other estimators using regression depth in small and large sample size

with outliers. (Fujiki and Shirahata, 2011)

4. Overlap

The Overlap can be defined by Difinition 1 and Difinition 2. Thus, the separation is defined as

follows. (Christmann and Rousseeuw, 2001)

Definition 7 The data set is completely separated completely if there exists θ ∈ Rp such that

(xi, 1)θ > 0 if yi = 1,

(xi, 1)θ < 0 if yi = 0, (i = 1, · · · , n).

A data set is quasi-completely separated if there exists θ ∈ Rp \ {0} such that

(xi, 1)θ ≥ 0 if yi = 1,

(xi, 1)θ ≤ 0 if yi = 0,

for all i and if there exists j ∈ {1, · · · , n} such that (xj , 1)θ = 0.

Definition 8 The overlap is the number of observations that need to be removed to obtain complete

or quasi-complete separation in binary regression model.

In other words, Difinition 8 is the minimal number of missclassification in the training data for any

linear discriminant function. From Difinition 7 and 8, a data set is said to have overlap if there is no

complete separation and no quasi-complete separation. For logistic regression model, the maximum

likelihood estimator of θ does not exist if a data set has no overlap.

Figure 1 is the scatter plot of an artificial data set with

x1 = {−1.5,−1, 0, 0, 1, 1, 2, 3, 3, 3.5},
x2 = {0, 3, 1, 2, 2, 4, 2, 1, 3, 4},
y = {0, ∗, 0, 0, 0, 0, 1, 1, 1, 1}.

If ∗ is 1 (y2 = 1), then the data sets {yi = 0; i = 1, · · · , n} and {yi = 1; i = 1, · · · , n} can not be

separated by a hyperplane. In that case, the maximum likelihood estimator exists. However, if ∗ is

0 (y2 = 0), then this data sets can be separated by an appropriate hyperplane. In that case, the

maximum likelihood estimator does not exist, due to complete separation.

By the way, some statistical softwares such as SAS, S-PLUS or R execute an iteration method

to obtain a maximum likelihood estimate. Furthermore, glm function implemented in R presents

the result of the iteration with regard to the maximum likelihood estimate in spite of failing in

convergence of the iteration. In this case, a standard error for regression parameter estimate is very

large. However, if a data set has no overlap, the deepest regression estimator can be obtained. Figure

1 shows that the red line is the result of linear discriminant analysis, and the blue line is the result of

the deepest regression in logistic regression model. Both of two lines yield similar results. Therefore,
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we confirm that it is possible to use the deepest regression estimator in logistic regression model for

the discriminant analysis, due to complete separation.

Figure1: Scatter plot of an artificial data set

Figure 1: Red line is LDA, Blue line is DRE(∗ is yi = 0 or yi = 1).

Figure2: The result of generating data sets with complete separation or overlap

Figure 2: Overlap(k = 0) Figure 3: Overlap(k = 1)
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5. Simulation

Firth(1993) suggested a method to eliminate a bias of the maximum likelihood estimator. The

regression parameter θ is estimated by the modified log-likelihood function of Firth’s method logFL(θ)

logFL(θ) = logL(θ) +
1

2
log |I(θ)|

where L(θ) is the likelihood function of logistic regression model, I(θ) is Fisher’s information matrix.

As a result, Firth’s method can estimate the regression parameter under the complete or the quasi-

complete separation. (Heinze and Schemper, 2002)

King and Ryan (2002) examined the performance of the maximum likelihood estimator in the

presence of near separation, and compared a maximum likelihood estimator with an estimator us-

ing the exact logistic regression. We compare three estimators, which are the maximum likelihood

estimator(MLE), an estimator using Firth’s method, and the deepest regression estimator(DRE) in

logistc regression model. We refer the simulation method of King and Ryan(2002) and Ohkura and

Kamakura(2007).

To measure the performance of three estimators(MLE, Firth’s method, and DRE), we carried

out the following simulation. We generate n = 10, 20, 50, 100, 500 from the uniform distribution,

where k is the number of observations overlapping and d(≥ k) is sample size in the range of overlap,

as follows.

yi =

{
0 (−5 ≤ xi ≤ 5, i = 1, · · · , n/2)
1 ( 5 ≤ xi ≤ 15, i = n/2− 1, · · · , n− d)

We decide n, k, and d. We generate n/2 from the uniform distribution in [−5, 5]. Let this data set

for yi = 0. Similarly, we generate n/2− d from an uniform distribution in [5, 15]. Let this data set be

yi = 1.

xi =


[5, 15] (i = n/2, · · · , n− d)[

max
1≤j≤n/2

{xj} − k, max
1≤j≤n/2

{xj} − 1

]
(i = n− d+ 1, · · · , n)

k = 0 implies complete separation. Figure2 is the example of k = 0 and k = 1, and shows that red is

MLE, green is Firth’s method, and blue is DRE.

We want to fit a model log{πi/(1− πi)} = θ1xi + θ2 for the generated data set, and we estimate

θ1 of MLE, Firth’s method, and DRE.

Table 1 is the average of 100 θ1 estimates in each estimator. When k = 0 is complete separation,

as the sample size n increases, the estimate of MLE and Firth’s method also increases. In that case,

the estimate of DRE does not increase. As the overlap k increases, the estimate of MLE and Firth’s

method decreases. Similarly, as d increases, the estimate of MLE and Firth’s method decreases.

However, the estimate of DRE is approximately-constant in the case that complete separation or

overlap exists. Therefore, DRE is not affected by complete separation or overlap.
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