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Analysis of discrete events occurring in space-time is often performed by projecting the available
historical data on space or time, thus reducing dimensionality to enable studying certain characteristics
of interest such as spatial distribution or temporal frequency patterns. Another case is the projection
from 3D coordinates to 2D maps, to facilitate visualization and analysis. Necessarily, data projections
imply a certain loss of information which will depend on the structural properties of the underlying
generating process. In this paper, we are interested in the study of this effect in relation to real
phenomena displaying multifractal behavior such as seismic activity. More specifically, 3D and 2D
multifractal analyses, based on singularity and multifractality spectra, are applied to study the infor-
mation loss derived from projection of spatio-temporal seismic data by removing the time component.
A similar study is applied to compare the sets of seismic data obtained with and without considering
the magnitude attribute to each event. The analysis is performed on a seismic sequence in the Agron
area located at southern Spain, within the period 1988-1989.

Introduction

The aim of this work is to study the information loss derived from projection on space or on time
of available data of discrete events occurring in space-time. In recent works, earthquake distribution
in space has been studied showing fractal properties on various scales. Besides, a recent work reveals
multifractal patterns of seismicity in Greece seismicity (Dimitriu et al. 2000).

In this work, we apply multifractal analysis techniques (multifractality and singularity spectra),
jointly with entropic analysis, to test information loss comparing the data before and after projection.

Methodological aspects

• Multifractal analysis

Scale invariance is the main feature of the fractal theory. This term indicates that specific
characteristics of a system are independent from the size of the magnitude of the scale at which
it is analyzed. Fractals are also known as monofractals and it have only one dimension. On
the one hand, when the system behavior can be described with only one scaling dimension this
behavior is denominated monofractal, this is the information dimension. On the other hand,
when the system behavior needs more than one dimension for being described it is denominated
multifractal.
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Multifractality and singularity spectra are the most extended multifractal analysis tools in ap-
plications, both techniques being based on a similar approach. There are several procedures
to obtain both spectra. In this work we adopt the box-counting procedure, which is based on
obtaining a probability mass function reflecting the space-time and/or magnitude distribution of
the data set. For that purpose, the area under study is covered by N(ε) boxes of size ε, and pi

is defined as the ratio of the number of events that fall into box i to the total number of events
in the set.

For obtaining both spectra we use the generalized “q” representation of the partition function:

Zq(ε) =
N(ε)∑

i=1

pq
i (ε).

Its average value behaves at the origin, that is, with ε → 0, as

E[Zq(ε)] ∼ ετ(q).

The generalized dimensions are defined as

Dq =
1

q − 1
τ(q), where τ(q) = lim

ε→0

logE[Zq(ε)]
logε

.

The multifractality spectrum is the representation of Dq vs. q.

The singularity spectrum f(α) is given by the Legendre transform of the Hölder exponents
α(q) = τ ′(q):

f(α(q)) = qα(q)− τ(q).

To calculate f(α) we use the formalism exposed by Chhabra and Jensen (1989), given by the
forms

α(q) = lim
ε→0

logE




N(ε)∑

i=1

p̃ilogpi(ε)




logε
, f(q) = lim

ε→0

logE




N(ε)∑

i=1

p̃ilogp̃i(ε)




logε
,

with

p̃i(ε) =
pq

i (ε)
N(ε)∑

j=1

pq
j(ε)

.

These limits do not have a direct solution but, recently, several methods based on log-log fit have
been proposed for their calculation. This methodology consists in carrying out a linear fit to the
log-log representation. In the case of the multifractality spectrum, the procedure is:
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τ(q) = lim
ε→0

logE[Zq(ε)]
logε

−→ τ(q) =
logE[Zq(ε)]

logε
+ error(α) −→

τ(q)logε− error(α)logε = log[Zq(ε)].

The spectra interpretations are:

i) Multifractality spectrum and the generalized dimensions
The multifractality spectrum indicates the main characteristics of the multifractal behavior.
The behavior of the data set is multifractal if Dq > Dq′ for q′ > q. The larger the difference
between the maximum and the minimum the stronger the multifractal behavior of the data
set. In the case where Dq is constant the data set presents monofractal behavior.
The fractal dimensions indicate different multifractal characteristics of interest. The most
important ones are:

∗ Capacity dimension, D0. It shows how the points of the data set fill the area under
study. The larger the value of this dimension the better the space of the studied area
is covered.

∗ Information dimension, D1. It is a measure of order-disorder of the points of the data
set in the area under study. Large values indicate high disorder.

∗ Correlation dimension, D2. It indicates how is the clustering-inhibition patterns of
the points of the data set in the studied area. Low values correspond to high level of
clustering.

∗ Multifractal step, D−∞ − D∞. It shows the level of the multifractal behavior. Large
values indicate a strong multifractal behavior. On the contrary, low values correspond
to mainly monofractal behavior.

ii) Singularity spectrum, f(α) vs. α

The singularity spectrum shows different aspects. Its range indicates the level of multifractal
behavior. In the case of a monofractal structure we find scale-invariance, the spectrum
concentrates on. On the contrary, a wide range indicates high multifractal behavior. The
maximum of the curve coincides with the capacity dimension. In general, the left-hand
branch corresponds to q > 0 and the right-hand branch to q < 0. When increasing the
value of q the effect of the larger probabilities also increases. For this reason, the left-hand
branch is related with the degree of spatial clustering, and the curves whose left-hand branch
has a slow decay correspond to strong spatial clustering patterns.

• Entropy analysis

The concept of entropy can be understood as the uncertainty associated to a system. This
uncertainty can be explained as the incapacity of predicting one event by means of one occurred
before. The most commonly used measure of entropy is the Shannon entropy. High values of the
Shannon entropy correspond to high levels of uncertainty and disinformation. Its expression for
a given discrete distribution (p1, ..., pn) is:

H = −
n∑

i=1

pilnpi.

In our case, n is the number of boxes that cover the area under study, and pi is the proportion
of events falling into the box i.
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The entropy is maximized when all probabilities are equal, pi =
1
n
. In this case,

Hmax = −
n∑

i=1

1
n
ln

1
n

= −ln 1
n

= lnn.

The value of the Shannon entropy increases with the number of boxes. For this reason, we work
with the configuration entropy, which is defined as

Hconfig =
H

Hmax
= −

∑n
i=1 pilnpi

lnn
.

A configuration entropy value close to 1 indicates a highly uniform distribution od points. Con-
versely, small values of the configuration entropy correspond to a high degree of heterogeneity,
that is, to strong spatial clustering.

Real data application

The above tools are applied to a real seismic data sequence, which comprises a seismic swarm
of about 256 earthquakes of magnitude between 1 and 4.1 in the Richter scale occurred during 241
days within the period November 1988 to April 1989 near the village of Agron (Granada province,
Andalusia, southern Spain).

Firstly, we perform the analysis considering the geometrical and temporal components (3D),
and the results are compared the those obtained by considering only the geographical coordinates
(2D), without the effect of the time component. Also, to check for possible temporal heterogeneity,
we divide the data set into three subsets corresponding to the days 1-77 (133 earthquakes), 78-160
(64 earthquakes) and 161-241 (59 earthquakes), and obtain results restricted to each one of the three
clusters.

Secondly, we compar the results derived by performing the analysis on geographical and magni-
tude components (3D) to those obtained considering only the geographical coordinates. Again, the set
is further divided into three clusters corresponding to the 154 earthquakes with magnitude lower than
1.8, the 73 earthquakes with magnitude above 2.4, and 29 earthquakes with magnitude above 2.4. In
all cases, we study the loss of information caused by projection.

• Case 1: Geographical and temporal components

In Figure 1 we can see both spectra,the singularity and multifractality spectra. These show that
the first cluster has stronger multifractal behaviour than other ones. In the singularity spectrum
we can see that the second and the third clusters cover well the space because their maximum
value, that is, the capacity dimension, is large and present a high degree of homogeneity reflected
in the sudden drop of the left-hand branch of the singularity spectrum. These aspects can be also
seen in table 1 containing the values of the generalized multifractal dimensions. The values of the
steps show that the first cluster has the stronger multifractal behavior. The capacity dimension
of the first cluster indicates that it does not cover well the space, contrary to the second and
third clusters. The low values of the information and correlation dimensions indicate that this
cluster has a strong spatial clustering pattern and is heterogeneous.

These remarks are corroborated by the entropic analysis. In Table 2 we observe that the value
of the configuration entropy of the three variables jointly is not sufficiently high and, for that
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Figure 1. Multifractality and singularity spectra. Case 1
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Table 1. Generalized fractal dimensions. Case 1

D0 D1 D2 Step
3D Analysis 2.0302 1.8493 1.5253 1.2458
Full sequence 1.4008 1.2888 1.1174 0.7778
1st Cluster 1.1579 1.0061 0.8359 0.7620
2nd Cluster 1.4436 1.3840 1.3209 0.6164
3rd Cluster 1.4298 1.3907 1.3478 0.4681

reason, in the case of carrying out the projection will be lost important information. The entropic
analysis also indicates that, in the case of performing a projection the information loss is minimum
when the temporal variable is removed instead of any of geographical coordinates.

Table 2. Configuration entropies. Case 1

X-Y-T X-Y X-T Y-T
0.7286 0.7477 0.8675 0.8345

• Case 2: Geographical and magnitude components

In this case, the singularity and multifractality spectra displayed in Figure 2 show that the first
cluster has a slightly stronger multifractal behavior than the other ones. On the other hand, the
singularity spectrum shows that the second cluster covers better the space and presents a higher
degree of homogeneity than the other ones. These remarks are also confirmed by the generalized
multifractal dimension values given in Table 3.

Furthermore, from entropic analysis, the values of configuration entropy in Table 4 indicates that
significant information is loss under projection, with the minimum being obtained in the case
where the geographical coordinates is removed.

Conclusions

In this paper, based on the singularity and multifractality spectra, we show the effects of projec-
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Figure 2. Multifractality and singularity spectra. Case 2
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Table 3. Generalized fractal dimensions. Case 2

D0 D1 D2 Step
3D Analysis 2.2690 2.0088 1.6979 1.6357
Full sequence 1.4008 1.2888 1.1174 0.7778
1st Cluster 1.2543 1.1524 1.0113 0.7081
2nd Cluster 1.4397 1.3855 1.2928 0.6433
3rd Cluster 1.0714 0.9995 0.9090 0.5944

tion of a multidimensional set of data consisting of earthquake events identified in terms of geographical
coordinates and the time of occurrence, as well as the magnitude, by removing one of the components.

In particular, significant heterogeneities associated to the time or the magnitude dimension, which
may be of potential interest for explaining the structuring of the data, are ignored as a consequence of
projection. The entropic analysis allows to quantify the information loss derived.
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Table 4. Configuration entropies. Case 2

X-Y-M X-Y X-M Y-M
0.6959 0.7910 0.7549 0.7128
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