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WHY RANDOM DEFORMATION?

In environmental statistics it is common practice to make a transformation (warping) of a random

field in order to obtain correlation homogeneity. This paper deals with another type of transformation,

where the warping is part of the mechanism that generates the field, and has a physical interpretation.

The statistical distribution of ocean wave slopes is an important parameter in many oceano-

graphic applications, needed for calibration of algorithms in remote sensing of ocean wind and wave

fields and many other variables. The distribution is also important for the understanding of physi-

cal wave mechanisms and in the safety analysis of marine vessels. A special topic is the front-back

asymmetry, the fact that for wind-driven waves, the leeward wave front is steeper than the wave back.

The statistical distribution of wave slopes in general, and front-back asymmetry in particular,

has been the subject of systematic empirical studies, since Cox and Munk (1954, 1956). An example of

an empirically fitted slope distribution by Cox and Munk, together with a theoretical slope distribution

in a first-order Lagrange model, can be seen in Figure 1.

Most theoretical studies of front-back wave asymmetry are based on non-linear differential equa-

tion models, and it is difficult to perform a theoretical analysis of their statistical properties. The

first-order Lagrange model is a linear model, giving room for explicit statistical analysis. It can re-

produce statistical features empirically observed in real ocean waves. The stochastic Lagrange wave

model is a realistic alternative to the Gaussian linear model, introduced and studied by Gjøsund

(2003), Socquet-Juglard et al. (2004), and Foquet et al. (2006). Theoretical studies have recently been

made by Lindgren and Åberg; see references in Lindgren and Lindgren (2011).

We describe a random deformation of a Gaussian field that leads to realistic 3D Lagrange waves

with directional spreading, observed at a fixed time over a large area of the sea surface. We present

by examples the statistical distributions of slopes observed, with asynchronous area sampling, and

synchronous sampling, when observations are taken only at up- or down-crossings of a specified level.

THE 3D STOCHASTIC LAGRANGE MODEL

The first order 3D Lagrange model is a model for the movements of individual water particles on

the sea surface. It consists of three correlated Gaussian random fields, W (t, s) and Σ(t, s) =

(X(t, s), Y (t, s)T , with time parameter t and space parameter s = (u, v) . The parameter s de-

notes the original horizontal position of a water particle on the surface, and W (t, s), (X(t, s), Y (t, s))

are its vertical and horizontal coordinates at time t . The bivariate field Σ is thus a random defor-

mation of the field W , taking care of the fact that in real waves, the water particles tend to move in

a more or less irregular elliptic patterns, vertically and horizontally.
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Figure 1: Left: Illustration from Cox & Munk (1954) of ap-

proximate normalized slope density functions in along-wind

(lower curves) and cross-wind (upper curves) direction, esti-

mated from sun glitter over an area, together with standard

normal densities (dashed). Right: Slope densities calculated

in the 3D Lagrange model for Pierson-Moskowitz orbital spec-

trum with considerable directional spreading. The density

has been modified to resemble the Cox and Munk figure, with

wave front slopes being positive.

The fields have mean zero, are stationary in time and homogeneous in space, and they can be

expressed as stochastic integrals over wavenumber κ = (κx, κy) ∈ R2 , or, alternatively, over wave

angular frequency ω > 0 and wave direction θ ∈ (−π, π] . Wave number and frequency/direction

are related via the dispersion relation, which also includes water depth h . With κ =
√
κ2x + κ2y , the

dispersion relation is

ω = ω(κ) =
√
gκ tanhκh, θ = arctan2(κy, κx).(1)

Here, g is the earth gravitation constant and arctan2 the four quadrant inverse tangent function.

We denote by τ and σ = (σx, σy) a time difference and a space difference, respectively. The

covariance function of the field in space-time is then

rww(τ,σ) = Cov(W (t, s),W (t+ τ, s+ σ)) =

∫ ∞
ω=0

∫ π

θ=−π
cos(κσ − ωτ)S(ω, θ) dω dθ,(2)

where S(ω, θ) , for ω > 0 , −π < θ ≤ π , is the directional spectrum of the field. We call S(ω, θ)

the orbital spectrum, indicating that it refers to the orbital motions of water particles. A complex

representation of the fields are

W (t, s) =

∫
(κ,ω)∈D

ei(κs−ωt) dζK(κ, ω) =

∫ ∞
ω=−∞

∫ π

θ=−π
ei(κs−ωt) dζ(ω, θ).(3)

Σ(t, s) =

(
X(t, s)

Y (t, s)

)
= s+

∫
ω

∫
θ
H(θ, ‖κ‖) ei(κs−ωt) dζ(ω, θ).(4)

Here ζ(κ, ω) is a Gaussian complex spectral process with mean 0 . The transfer function H is built

up with an imaginary part, derived from the hydrodynamic wave equations, and one real part that

will account for the deformation. The following form contains a linkage parameter α that determines

the degree of asymmetry. The choice of the real part is somewhat ad hoc, but is intended to represent

the wind influence on the wave dynamics; see further discussion Lindgren and Lindgren (2011) and

Lindgren and Aberg (2008).

H(θ, κ) =
α

ω2
·

(
cos2(θ) | cos(θ)|

cos2(θ) sin(θ) sign(cos θ)

)
+ i

coshκh

sinhκh
·

(
cos θ

sin θ

)
.(5)

Space and time waves and their derivatives.

The first-order 3D Lagrange model for ocean waves is the tri-variate Gaussian process (Σ(t, s),W (t, s)) ,

t ∈ R , s ∈ R2 . The time dependent Lagrange wave field L(t, (x, y)) can be implicitly expressed as

L(t,Σ(t, s)) = W (t, s).(6)
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This defines L(t, (x, y)) uniquely if there are no two s1 6= s2 such that Σ(t, s1) = Σ(t, s2) = (x, y) .

Otherwise, folding occurs, and the Lagrange wave has several branches. By keeping either time or

space coordinates fixed, t = t0 , and (x, y) = (x0, y0) , respectively, one obtains two types of wave

observations, recorded in empirical studies, space waves, and time waves, respectively.

The wave slopes in the two models can be expressed in terms of the partial derivatives, found

by direct differentiation of (6):(
Wu

Wv

)
=

(
Xu Yu
Xv Yv

)(
Lx
Ly

)
, Wt = Lt +

(
Xt Yt

)(Lx
Ly

)
,(7)

where Lt, Lx, Ly denote the local partial derivatives, on the branch determined by the reference

coordinates.

The Lagrange space wave is what is seen in a photo or radar image of the sea surface, like in

the study by Cox and Munk (1954). The statistical distribution of space wave characteristics, such as

crest height, wave length, etc, are to be interpreted in a frequentistic way as what one can empirically

observe from observations of an infinitely extended, statistically homogeneous, section of the ocean,

with observations either by asynchronous sampling at a fixed grid in space or by synchronous sampling

at locations where level crossings occur.

We will now show some examples of slope distributions, obtained by asynchronous or syn-

chronous sampling. The theory behind the distributions is presented in Lindgren and Lindgren (2011).

EXAMPLES

The purpose of this example is to show how the degree and direction of the spreading affects the

front-back asymmetry of the Lagrange space waves with different degree of linkage in model (5). To

clearly see the effects, we have chosen a moderate water depth, h = 32 m.

We will illustrate the theory on a model with Pierson-Moskowitz (PM) orbital frequency spec-

trum, i.e. the spectrum of the W -field, with un-directional, one-sided spectral density

S(ω) =
5H2

s

ωp(ω/ωp)5
e−

5
4
(ω/ωp)−4

, 0 ≤ ω ≤ ωc,

where Hs = 4
√

V(W (t, u)) is the significant wave height in the W -process, and ωp is the peak

frequency, at which the spectral density has its maximum. The peak period is defined as Tp = 2π/ωp .

We use fixed values, Hs = 7 m and Tp = 11 s, for significant wave height and peak period, and

assume a finite cut off frequency ωc = 2.5 rad/s to avoid small but high frequency wave components.

The unidirectional space waves, without spreading, were studied by Lindgren and Aberg (2008),

and the results from that paper will be used for comparison. Here, the directional spreading is taken

as frequency independent and defined by the cos 2θ -function, so

S(ω, θ) = c(m)S(ω) cos2m
(
θ − θ0

2

)
,(8)

with different values for the spreading parameter m . An isotropic wave field corresponds to m = 0 ,

while m = ∞ resembles unidirectional waves. We use m = 0, 2, 5, 10, 20, 120 , in this example. All

simulations and computations are made in the Matlab toolbox Wafo; see [8].

Asynchronous sampling

Figure 3 shows densities of asynchronous slopes in x - and y -direction (“along-wind” and “cross-

wind”) for different degrees of linkage and spreading in model (5). These distributions resemble the
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Figure 2: Directional Pierson-Moskowitz (PM) spectra for the W (t, s) -field, S(ω, θ) =

c(m)S(ω) cos2m(2θ) ; m = 0, 2, 5, 10, 20, 120 , from top-left to bottom-right.

distributions obtained by Cox and Munk (1954), shown in Figure 1. Note that the densities in the

right panel in Figure 1 are turned backwards to be compatible with the original Cox and Munk figure.

The figures reveal some interesting features of the linked Lagrange model. The asymmetry

between the positive and negative parts of the asynchronous slope distribution is only present for

the more extreme part of the two distributions. For slopes smaller than the median there is little

asymmetry; this is verified from the complete data. For slopes larger in absolute value than the

median in the two distributions, the asymmetry is large.

The effect of directional spreading is clear from the figure. In the more concentrated spectrum,

with m = 20 , all the mentioned effects are more pronounced than for m = 5 .

−0.4 −0.2 0 0.2 0.4
0

1

2

3

4

slope

p
d
f

−0.2 −0.1 0 0.1 0.2 0.3
0

2

4

6

8

10

slope

p
d

f

−0.4 −0.2 0 0.2 0.4
0

1

2

3

4

slope

p
d
f

−0.2 −0.1 0 0.1 0.2 0.3
0

2

4

6

8

10

slope

p
d

f

Figure 3: Asynchronous slope PDF

in x - (left) and y -directions (right).

Orbital spectrum is PM with wa-

ter depth h = 32 m. Directional

spreading according to Figure 2 with

m = 5 (upper panel) and m = 20

(lower panel). Linkage parameters

are α = 0, 0.4, 0.8, 1.2, 1.6, 2.0 (most

skewed).
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Figure 4: Cumulative distribution

functions (CDF) for (absolute) space

slopes at up- and downcrossings of

the level w0 = σ = Hs/4 along

the main wave direction θ0 = 0 .

PM-spectra with different m . The

linkage parameter in model (5) is

α = 0.4 .
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Figure 5: Mean wave direction’s influ-

ence on the CDF for (absolute) space

slopes at up- (left) and downcrossings

(right) along the x -direction of the

level w0 = σ = Hs/4 . Spreading

m = 10 , and linkage parameter in

model (5) is α = 0.4 (upper panel)

and α = 2.0 (lower panel).

Synchronous sampling – Slopes at up- and downcrossings

This example illustrates the synchronous sampling of slopes observed at up- and downcrossings of

specified levels. The distribution function for slopes in the space waves, observed along the positive

x -axis, i.e. in the main wave direction, is computed as described in Lindgren and Lindgren (2011).

Figure 4 shows the cumulative distribution functions for the (absolute values of the) slopes

at upcrossings and downcrossings of the level w0 = σ = Hs/4 for the six degrees of directional

spreading in Figure 2. For comparison, the distribution for the unidirectional case is also plotted

(dashed curve). Obviously, the wave steepness decreases with increasing directional spreading, a fact

that agrees with many other theoretical and empirical wave studies, as well as with the results for

asynchronous sampling. Also the front-back asymmetry decreases with increasing spreading, as can

be expected.

As a final example, Figure 5 shows how the asymmetry depends on the mean wave direction in

relation to the observation axis for the space waves. The spectrum is the directional PM-spectrum,

(8), with m = 10 , and main wave direction θ0 = 0, π/4, π/2, 3π/4, π . The linkage parameter in (5)

is taken as α = 0.4 as in Figure 4, and as α = 2 , for a more extreme case.

As see from the figure, the linkage has almost no effect on the up- or downcrossing slopes when

the linkage (wind) is parallel to the wave crests, θ0 = π/2 . The slopes at upcrossings are slightly

smaller than at the downcrossings but the difference is small. Wind against the main wave direction

gives steeper waves than wind along the wave direction, and the same holds for the intermediate cases,

θ0 = π/4 and θ0 = 3π/4 .
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ABSTRACT

In the stochastic Lagrange model for ocean waves the vertical and horizontal movements of

surface water particles are modeled as correlated Gaussian processes. In this paper we investigate the

statistical properties of wave characteristics related to wave asymmetry in the 3D Lagrange model. We

present a modification of the original Lagrange model that can produce front-back asymmetry both of

the space waves, i.e. observation of the sea surface at a fixed time, and of the time waves, observed at a

fixed measuring station. The results, which are based on a multivariate form of Rice’s formula for the

expected number of level crossings, are given in the form of the cumulative distribution functions for the

slopes observed either by asynchronous sampling in space, or at synchronous sampling at upcrossings

and downcrossings, respectively, of a specified fixed level. The theory is illustrated in a numerical

section, showing how the degree of wave asymmetry depends on the directional spectral spreading and

on the mean wave direction. It is seen that the asymmetry is more accentuated for high waves, a fact

that may be of importance in safety analysis of capsizing risk.

Keywords: Crossing theory, directional spreading, front-back asymmetry, Gaussian process, Palm

distribution, Rice formula, slope asymmetry, wave steepness.
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