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1. Introduction 
 

  Let X  be a p N×  observation matrix ( )p N≤  which is obtained by independently 
distributed p -dimensional variables ( )1 px x ′=x  for N  observations. Let S  be a sample 
covariance matrix of X . The covariance matrix S  is expressed as 

 ( )( )
1

1
1

N

N α α
α=

′= − −
− ∑S x x x x , (1.1) 

where x  is a sample mean vector of x . Here S  is positive semidefinite. 
  Suppose the covariance matrix S  has a p p×  real orthogonal matrix B  which is formed by 
eigenvectors of p  components, and is satisfies ′ =B B I . Here ′B  means the transpose of B , and 
I  is the identity matrix. Let us now consider any orthogonal transformation 

 ′=U B X  (1.2) 

as a multivariate linear model for X , where U  is a p N×  transformed observation matrix 
which has p  components. This is a normal approach for analyzing principal components. 
  The method of principal component analysis is often applied, when the number of variables under 
consideration is too large to treat. Principal components, which are obtained by principal 
component analysis, are use to reduce the dimension of a data set of original interrelated variables, 
where the principal components are constituted of uncorrelated linear combinations with large 
variance of these variables. However, the normal approach for analyzing principal components, 
which treat all variables simultaneously, requires many computing resources in high dimensional 
data with a large number of variables. 
  Then we propose an efficient approach for analyzing principal components as a proposal approach. 
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The proposal approach should be derived with a new strategy with a partitioned data model as an 
orthogonal transformation for a multivariate linear model. We also investigate the proposal 
approach through two concrete examples with an educational data set ( 9, 166)p N= =  and a 
molecular genetics data set ( 100, 135)p N= = . The validity of the proposal approach should be 
verified in high dimensional data with mixed variable structure. 
 
 
2. An efficient approach for principal component analysis 
 

  In this section an efficient approach for analyzing principal components should be proposed. We 
shall now consider a new strategy with a partitioned data model to derive an orthogonal 
transformation 

 ′=V H X  (2.1) 

as a multivariate linear model for X , where V  is a p N×  transformed observation matrix 
which has p  components and H  is a p p×  real orthogonal matrix such that ′ =HH I . Here 
′H  means the transpose of H . Then the orthogonal matrix H  should be derived with the new 

strategy with the partitioned data model as a proposal approach. 
  Let us partition the p N×  observation matrix X  into two sets of observation matrices (1)X  
and (2)X  as follows: 

 
(1)

(2)

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

X
X

X
. (2.2) 

  Let (1)X  be a 1p N×  partitioned observation matrix formed by a 1p -dimensional vector 

( )1

(1)
1 px x ′=x  for N  subjects. Similarly, let (2)X  be a 2p N×  partitioned observation 

matrix formed by a 2p -dimensional vector ( )1

(2)
1p px x+

′=x  for N  subjects, where 

2 1p p p= − . 
  Let 1S  and 2S  be sample covariance matrices of (1)X  and (2)X , respectively. The covariance 
matrices 1S  and 2S  are expressed as 

 ( )( )(1) (1) (1) (1)
1

1

1
1

N

N α α
α=

′= − −
− ∑S x x x x , (2.3) 

 ( )( )(2) (2) (2) (2)
2

1

1
1

N

N α α
α=

′= − −
− ∑S x x x x , (2.4) 

where (1)x  and (2)x  are sample mean vectors of (1)x  and (2)x , respectively. Here 1S  and 2S  
are positive semidefinite. 
  Suppose the covariance matrix 1S  has a 1 1p p×  real orthogonal matrix 1C  which is formed by 
eigenvectors of 1p  components, and is satisfies 1 1

′ =C C I . Similarly, suppose the covariance 
matrix 2S  has a 2 2p p×  real orthogonal matrix 2C  which is formed by eigenvectors of 2p  
components, and is satisfies 2 2

′ =C C I . Here 1
′C  and 2

′C  mean the transposes of 1C  and 2C , 
respectively. 
  Let (1)*Y  be a 1k N×  transformed observation matrix which has 1k  components, and be 
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obtained by an orthogonal linear transformation 

 (1)* * (1)
1
′=Y C X , (2.5) 

where *
1C  is a 1 1p k×  real orthogonal matrix obtained from 1C  by selecting 1k  columns in 

descending order of the variance. Similarly, let (2)*Y  be a 2k N×  transformed observation matrix 
which has 2k  components, and be obtained by an orthogonal linear transformation 

 (2)* * (2)
2
′=Y C X , (2.6) 

where *
2C  is a 2 2p k×  real orthogonal matrix obtained from 2C  by selecting 2k  columns in 

descending order of the variance. Then let *Y  be a k N×  transformed observation matrix formed 
by a k -component vector ( )*

1 ky y ′=y  for N  subjects, and be obtained by connecting 
(1)*Y  and (2)*Y  as follows: 

 
(1)*

*
(2)*

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

Y
Y

Y
. (2.7) 

  Let *
YS  be a sample covariance matrix of *Y . The covariance matrix *

YS  is expressed as 

 ( )( )* * * * *

1

1
1

N

N α α
α=

′= − −
− ∑YS y y y y , (2.8) 

where *y  is a sample mean vector of *y . Here *
YS  is positive semidefinite. 

  Suppose the covariance matrix *
YS  has a k k×  real orthogonal matrix *D  which is formed by 

eigenvectors of k  components, and is satisfies * *′ =D D I . Here *′D  means the transpose of *D . 
Let us partition the k k×  real orthogonal matrix *D  into two sets of real orthogonal matrices *

1D  
and *

2D  as follows: 

 
*
1*
*
2

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

D
D

D
, (2.9) 

where *
1D  is a 1k k×  real orthogonal matrix, and *

2D  is a 2k k×  real orthogonal matrix. 
  Let *Z  be a k N×  transformed observation matrix which has k  components, and be obtained 
by an orthogonal linear transformation 

 * * *′=Z D Y . (2.10) 

  Then *Z  is expressed by *
1D  and *

2D  as 

 
* (1)*
1* * (1)* * (2)* * * (1) * * (2)

1 2 1 1 2 2* (2)*
2

′⎛ ⎞ ⎛ ⎞ ′ ′ ′ ′ ′ ′= = + = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

D Y
Z D Y D Y D C X D C X

D Y
. (2.11) 

  Let *H  be a p k×  real orthogonal matrix, and let us partition *H  into two sets of real 
orthogonal matrices *

1H  and *
2H  as follows: 

 
* * *
1 1 1*
* * *
2 2 2

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H C D
H

H C D
, (2.12) 

where *
1H  is a 1p k×  real orthogonal matrix, and *

2H  is a 2p k×  real orthogonal matrix. 
  Thus the proposal orthogonal linear transformation 
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 * *′=V H X  (2.13) 

is derived with the new strategy with the partitioned data model, where *V  is a k N×  
transformed observation matrix which has k  components. Here *V  means the principal 
components in V . This is the proposal approach as the efficient approach for analyzing principal 
components. 
 
 
3. Numerical studies 
 
  In this section the validity of the proposal approach should be verified in high dimensional data 
with mixed variable structure. We shall now investigate the proposal approach through two 
concrete examples. These examples are an educational data set of scholastic ability in Japan 
( 9, 166)p N= = , and a molecular genetics data set extracted from a data set on the International 
HapMap Project ( 100, 135)p N= = . 

  The educational data set, which is obtained from the results of an examination to junior high 
school students, is constituted of ordinary low dimensional large sample size data. And the 
molecular genetics data set, which is obtained from two ethnic groups as Japanese ( 45)N =  and 
European ( 90)N = , is constituted of high dimensional data with mixed variable structure with 
two sets of different types of observations. 
  In each example, we present eigenvalues with the normal approach, eigenvalues with the 
proposal approach, and inner products of eigenvectors as diagonal elements of ′B H . The results 
with the proposal approach are corresponding to the results with the normal approach well in 
principal components, though the computational cost with the proposal approach is relatively small. 
 
3.1. Examples with an educational data set of scholastic ability in Japan ( 9, 166)p N= =  

 
Example 1: 3k =  1 2( 1, 2)k k= =  

1. Eigenvalues with the normal approach:   3211.94  706.30  271.07 
2. Eigenvalues with the proposal approach:  3211.12  670.47  114.00 
3. Inner products of the eigenvectors:   1.00  0.97  0.09 
 
Example 2: 5k =  1 2( 2, 3)k k= =  

1. Eigenvalues with the normal approach:   3211.94  706.30  271.07  211.39  125.30 
2. Eigenvalues with the proposal approach:  3211.67  699.84  255.33  122.19  111.55 
3. Inner products of the eigenvectors:   1.00  0.99  0.95  0.41  0.51 
 
  The set of the explanatory variables in 1 ( 4)p =  is constituted of Japanese language, social 
studies, mathematics, and science. And the set of the explanatory variables in 2 ( 5)p =  is 

constituted of music, art, physical education, technical arts and home economics, and English 
language. 
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3.2. Examples with a molecular genetics data set extracted from a data set on the International 
HapMap Project ( 100, 135)p N= =  

 
Example 1: 10k =  1 2( 5, 5)k k= =  

1. Eigenvalues with the normal approach:   3.95  1.41  1.30  1.23  1.21  1.14  1.09  
1.01  0.98  0.92 
2. Eigenvalues with the proposal approach:  3.92  1.25  1.17  1.01  0.89  0.82  0.74  
0.72  0.60  0.35 
3. Inner products of the eigenvectors:   1.00  0.90  0.85  0.72  0.53  0.15  0.30  
0.29  0.20  0.08 
 
Example 2: 20k =  1 2( 10, 10)k k= =  

1. Eigenvalues with the normal approach:   3.95  1.41  1.30  1.23  1.21  1.14  1.09  
1.01  0.98  0.92  0.91  0.89  0.83  0.83  0.80  0.77  0.75  0.69  0.66  0.64 
2. Eigenvalues with the proposal approach:  3.93  1.30  1.24  1.12  1.08  1.01  0.92  
0.82  0.78  0.76  0.72  0.69  0.64  0.61  0.54  0.52  0.50  0.43  0.38  0.33 
3. Inner products of the eigenvectors:   1.00  0.94  0.95  0.53  0.49  0.78  0.61  
0.15  0.13  0.32  0.43  0.09  0.01  0.30  0.11  0.44  0.18  0.06  0.10  0.02 
 
  The set of the explanatory variables in 1 ( 50)p =  is constituted of rs1000000, rs10000010, 

rs10000023, rs10000030, rs10000041, rs1000007, rs10000081, rs10000092, rs10000121, rs1000014, 
rs10000141, rs1000016, rs10000169, rs10000185, rs10000201, rs1000022, rs10000226, rs1000025, 
rs10000282, rs10000300, rs1000031, rs1000032, rs10000388, rs1000040, rs1000041, rs10000435, 
rs10000438, rs10000456, rs10000471, rs10000487, rs1000050, rs10000502, rs10000538, 
rs10000543, rs1000055, rs10000595, rs1000061, rs1000068, rs10000697, rs10000708, rs1000071, 
rs10000719, rs10000726, rs1000073, rs10000770, rs1000078, rs10000785, rs1000079, rs1000083, 
and rs10000856. And the set of the explanatory variables in 2 ( 50)p =  is constituted of rs10000869, 

rs10000901, rs10000918, rs10000929, rs1000094, rs10000959, rs10000969, rs1000104, rs10001138, 
rs10001148, rs1000115, rs10001154, rs10001198, rs1000121, rs10001214, rs1000122, rs10001225, 
rs10001236, rs10001241, rs10001297, rs1000131, rs10001340, rs10001348, rs1000137, rs10001378, 
rs1000140, rs1000141, rs10001415, rs1000147, rs10001480, rs10001483, rs10001495, rs1000152, 
rs10001539, rs1000154, rs1000156, rs10001565, rs10001577, rs10001580, rs10001582, rs100016, 
rs10001608, rs10001613, rs10001638, rs10001657, rs10001661, rs10001689, rs10001694, 
rs10001725, and rs1000173. 
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ABSTRACT 
  An efficient approach for analyzing principal components (PCs) is proposed. Then the validity of 
the proposal approach with a new strategy with a partitioned data model is verified in high 
dimensional data with mixed variable structure. The method of principal component analysis (PCA) 
is often applied, when the number of variables under consideration is too large to treat. PCs, which 
are obtained by PCA, are use to reduce the dimension of a data set of original interrelated variables, 
where the PCs are constituted of uncorrelated linear combinations with large variance of these 
variables. However, a normal approach for analyzing PCs, which treat all variables simultaneously, 
requires many computing resources in high dimensional data with a large number of variables. 
Then we propose an efficient approach for analyzing PCs as a proposal approach with a new 
strategy with a partitioned data model, and we verify the validity of the proposal approach in high 
dimensional data with mixed variable structure. The novel approach for PCA based on our idea is to 
partition all variables into several blocks, and is to execute PCA to the sets of PCs of the every block. 
We also investigate the proposal approach through two concrete examples. These examples are an 
educational data set of scholastic ability in Japan, and a molecular genetics data set extracted from 
a data set on the International HapMap Project. The educational data set is constituted of ordinary 
low dimensional large sample size data. And the molecular genetics data set is constituted of high 
dimensional data with mixed variable structure with two sets of different types of observations. The 
two approaches for PCA with the normal approach and the proposal approach are performed to the 
two concrete examples, and the results are compared in terms of eigenvalues and eigenvectors. 
Then the results with the proposal approach are corresponding to the results with the normal 
approach well in PCs, though the computational cost with the proposal approach is relatively small. 
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