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Abstract

Multiple frame surveys are very useful when it is not possible to guarantee a complete coverage

of the target population and may result in considerable cost savings over a single frame design with

comparable precision. However, this technique is not very often applied from national statistical offices

(NSO) due to its complexity and also because in most surveys only a single sample frame is available.

Regarding the Colombian case, the implementation of multiple frame surveys is very rare and therefore,

this paper presents a proposal for a dual frame implementation in the National Agricultural Survey at

DANE (National Statistical Administrative Department - Colombian NSO) considering the three most

well known available estimators for the population total in the recent statistical literature.

Introduction

This paper considers a first approximation for the application of the multiple frame surveys

theory in one of the most important surveys for the Colombian government such as the Colombian

National Agricultural Survey (NAS). Multiple frame surveys are very useful when it is not possible to

guarantee a complete coverage of the target population and may result in considerable cost savings

over a single frame design with comparable precision. However, this technique is not very often

applied from national statistical offices (NSO) due to its complexity and also because in most surveys

only a single sample frame is available. The statistical literature about multiple frame surveys started

around 1960 and its development has evolved very quickly. Hartley and Rao have been two importants

names of researchers working in this subject and for the Colombian particular case there are not many

references about its application. A possible reason for this absence of applications on this topic could

be the practical problems (costs, data availability, among others) to build several sampling frames but

the recent advances on information systems and communications could help on the dissemination of

these techniques over the country.

There are several available estimators in the statistical literature and the first question to take

into account is how to choose which one of them would be more suitable for this application. The
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decision was taken according to the evaluation of the accuracy and precision of the more relevant

estimators with a Monte Carlo simulation. Some simulation analysis have been done before from

different authors but the usual sampling designs only range from simple random sampling without

replacement (SI) to two stage sampling with a SI design in each stage (SI-SI design). In this paper,

we will consider pps, stratified and multistage sampling designs and some of their combinations. The

comparison is done using the Colombian National Agricultural Survey which is implemented every

single year.

In the case of the NAS, some indicators are estimated in terms of soil use, production and yield

for both transitory and permanent cultivations, pasture area, milk production and animal inventory.

In parallel, some specialized agricultural surveys are implemented separately to the NAS in order to

estimate some variables of interest for legumes, rice and cattle. Then, several indicators are generated

for the same agricultural indicators. However, it does not exist so far a methodological proposal in

order to integrate several surveys in order to get a single estimation and in order to reduce costs and

variance of the estimations.

Multiple Frame Surveys

In survey sampling, a sampling frame is any device or instrument to identify and locate all the elements

in a population. However, in the classic theory of sampling, a single sampling frame is obtained in

order to get a sample. The sampling unit could be either an element or a subset of element and in this

sense, one could define two types of sampling frames: element sampling frames or subset sampling

frames as in the case of area sampling frames.

If it is possible to use two sampling frames in order to get a complete coverage of the population we

are facing a dual frame estimation problem (Hartley, 1962). In this case, we have to work under two

main assumptions: firstly, every unit in the population belongs to at least one of the two sampling

frames considered and secondly, for every unit in the sample of one frame will be possible to determine

if this unit belongs or not to the other sampling frame.

A graphical representation of the samples under a dual sampling frame approach is shown in the figure

1:

Figure 1: General scheme of samples under a dual sampling frame approach

We will consider the notation in the Table 1 (Fernandes, 2007). There are four possible scenarios

according to the knowledge of the total number of units in each sampling frame, the domains and the

possibility to assign the number of elements to be selected in each domain (Hartley,1962). The first

scenario is when all the domain sizes are known and then is possible to assign sample sizes to them

(Domain = Strata). The second one is when all the domain sizes are known, but the sampling sizes

can be assigned only to the sampling frames (Domains = Post-strata). The third one is when the

domain sizes are unknown but the sampling frame sizes are known. In this case, sampling sizes can be

assigned only to the sampling frames (Domains = Proper Domains). Finally, both the domain sizes
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Table 1: Notation
Object SAMPLING FRAME DOMAIN

A B a b ab

Population UA UB Ua Ub Uab

Population Size NA NB Na Nb Nab

Population Total tyA tyB tya tyb tyab
Population Mean µyA µyB µya µyb µyab

Sample SA SB Sa Sb Sab

Sample Size nA nB na nb n′ab n′′ab
Sample Total t̂yA t̂yB t̂ya t̂yb t̂′yab t̂′′yab
Sample Mean yA yB ya yb y′ab y′′ab

and the sampling frame sizes are unknown but the relative size of the sampling frames are known.

In this case, sampling sizes can be only assigned to the sampling frames (Domains = Domains in

populations of unknown size). In this paper, we will only consider the scenarios 2 and 3 as these are

the particular cases for our application.

Estimation in Dual Frame Surveys

Hartley Estimator

We will consider that our interest is to estimate a population total ty, using information from two

independent samples taken over each sampling frame. Under this dual sampling frame approach, the

total population ty can be expressed as ty = tya + tyab + tyb, where tya is the domain total in a, tyab
is the domain total in the intersection ab, and tyb is the domain total in b. Notice then a, ab and

b are mutually exclusive sets. Hartley (1962) proposed an estimator under this dual frame sampling

approach. The estimator corresponds to a weighted average in order to estimate the domain total

in the population by t̂yH(p) = t̂ya + pt̂′yab + (1 − p)t̂′′yab + t̂yb, where t̂ya is the estimated population

total for the domain a, t̂′yab is the estimated total population for the domain ab using the sample

in the sampling frame A, t̂′′yab is the estimated population total for the domain ab using the sample

in the sampling frame B, t̂yb is the estimated population total for the domain b. If the estimators

t̂ya, t̂yb, t̂
′
yab and t̂′′yab are unbiased for tya, tyb, tyab and tyab respectively, t̂yH(p) will be unbiased for

ty. Hartley (1962) proposed to calculate p in order to minimize the variance of t̂yH(p), considering

the assumption that both samples in both sampling frames are independent, this variance can be

expressed by V [t̂yH(p)] = V [t̂ya + pt̂′yab] + V [(1 − p)t̂′′yab + t̂yb] and the optimum value of p minimizing

this variance is given by popt =
V (t̂′′yab)+Cov(t̂

′′
yab,t̂yb)−Cov(t̂ya,t̂

′
yab)

V (t̂′yab)+V (t̂′′yab)

Fuller and Burmeister Estimator

Fuller and Burmeister (1972) considered a modification to Hartley’s estimator incorporating the es-

timated size of the domain ab according to the samples in both sampling frames t̂yFB(p1, p2) =

t̂ya + t̂yb + p1t̂
′
yab + (1 − p1)t̂

′′
yab + p2(N̂

′
ab − N̂ ′′ab), where N̂ ′ab and N̂ ′′ab are the respective estimators of

the size of domain ab under the samples from A and B respectively. If the estimators t̂ya, t̂yb, t̂
′
yab,

t̂′′yab, N̂
′
ab and N̂ ′′ab are unbiased for tya, tyb, tyab, tyab, Nab and Nab respectively; t̂yFB(p1, p2) will be

unbiased for ty. Analogously to the Harvey’s estimator, values for p1 y p2 are obtained in order to

minimize the variance of t̂yFB, to finally get[
p1opt
p2opt

]
= −

(
Cov

[
t̂′yab − t̂′′yab
N̂ ′ab − N̂ ′′ab

])−1 [
Cov(t̂ya + t̂yb + t̂′′yab, t̂

′
yab − t̂′′yab)

Cov(t̂ya + t̂yb + t̂′′yab, N̂
′
ab − N̂ ′′ab)

]

The optimal values of p1 y p2 are function of some population covariances that could be estimated
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from the information in the selected samples.

Pseudo Maximum Likelihood Estimator

Skinner and Rao (1996) proposed the Pseudo Maximum Likelihood (PML) estimator. This estimator

permits to calibrate the domain total estimations to the general total under complex sampling designs

like stratified or cluster sampling designs. The estimator is given by:

t̂yPMV (p) =
NA − N̂PMV

ab (p)

N̂a

t̂ya +
N̂PMV
ab (p)

pN̂ ′ab + (1 − p)N̂ ′′ab
[pt̂′yab + (1 − p)t̂′′yab]

+
NB − N̂PMV

ab (p)

N̂b

t̂yb

where N̂PMV
ab (p) is the smaller root of the quadratic equation:

(nA + nB)N̂2PMV
ab (p) − (nANB + nBNA + nAN̂

′
ab + nBN̂

′′
ab)N̂

PMV
ab (p)

+ nAN̂
′
abNB + nBN̂

′′
abNA = 0

The expected value and the variance of the PML estimator is obtained under asymptotic theory and

it is necessary to find an optimal value of p minimizing the asymptotic variance of N̂PMV
ab (p). The

minimization with respect to the asymptotic variance of t̂yPMV (p), have the problem that the sampling

weights would depend on the values of y.

Skinner and Rao (1996) show that the optimal value of p minimizing the asymptotic variance of

N̂PMV
ab (p) is given by popt =

NaNBV (N̂ ′′ab)

NaNBV (N̂ ′′ab)+NbNAV (N̂ ′ab)

Methodology

In order to compare and to evaluate the three estimators above to be implemented in the Colombian

ANS under a dual frame approach, we will consider an area sampling frame for the ANS itself and an

available list sampling frame from the Legumes Survey. Both studies have been designed and imple-

mented by DANE (Colombian National Statistical Office) and we will consider the current sampling

designs that have been used for these surveys. In this section, we will present the sampling designs

for the Colombian National Agricultural Survey (NAS) and the Legumes Survey (LS).

Colombian National Agricultural Survey - Sampling Design

The sampling frame for the Colombian National Agricultural Survey (NAS) corresponds to an area

sampling frame with a coverage of 37,900,546 has (169,587 SSUs in 31,588 PSUs). The survey uses a

stratified two stage sampling design: the first stage corresponds to a probability proportional to size

sampling without replacement (pips) and a simple random sampling without replacement sampling

design (SI) in the second stage. The auxiliary variable for the first stage is the PSU’s planimetric area.

The stratification variables are elevation and vegetable coverage. The NAS is applied twice per year

and for 2010, the sampling size during the first semester was 2,537 SSUs corrsponiding to 293,252 has

and for the second semester was 5,894 SSUs corresponding to 959,767 has

Colombian Legumes Survey (LS) - Sampling Design

Together with the NAS, another specific surveys are done over the country to estimate variables of

interest for some specific products such as corn, fish and legumes, among others. Currently, DANE

takes what is in these specialized frames from the area sampling frame and considered them as strata

(scenario 1). Then, the idea is to take information from the LS to make some simulation studies

and to evaluate some accuracy and precision indicators of some estimators under scenarios 2 and 3.
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The sampling frame of legumes has a coverage of 10,874 has (588 sampling units). The sampling

design is a srswor of these sampling units, considering the same stratification than in the ANS and

the sampling size for LS in 2010 was 95 sampling units corresponding to 1,735 has. There are four

possible combinations between srswor and πps for each design in the NAS and the LS.

Simulation

The simulation was done making an artificial study population, taking as reference sampling data

from the Agricultural National Survey (NAS in frame A) and the Legumes Survey (LS in frame B)

and replicating this information until reaching the population sizes in both frames. In both surveys,

three variables were measured: cultivated area, harvested area and production. However in terms

of the simulation, we chose cultivated area only. Then, from each sampling frame we used different

sample sizes. In the case of the ANS (frame A), there were two sampling sizes, each one for every

selection stage. On the first stage, we took 1,000 (2.5%) and 1,750(5%) PSUs. On the second stage, we

decided to take all the sampling elements in the PSU (cluster sampling design). In the case of the LS

(frame B), we took three different sample sizes corresponding to 59(10%), 160(20%) and 117(30%).

Finally, different random samples were obtained from each sample frame under the eight sampling

designs considered. The simulation was done using the libraries survey and TeachingSampling in R,

repeating this procedure a thousand of times and calculating the respective values of relative bias,

mean square error and the coverage probability. In order to evaluate the efficiency and precision of

the estimators considers, some precision measures such as the relative bias, the mean square error and

the coverage probability were calculated. The relative bias is calculated by SR = 1
M

∑M
m=1

t̂y,m−ty
ty

,

where t̂y,m is the estimated value t̂y for the m-th repetition. The mean square error is calculated

by ECME = 1
M

∑M
m=1(t̂y,m − ty)

2. Finally, if we define the confidence interval for the total of the

variable of interest y under the normal approximation like IC(m) : t̂y,m ± z1−α/2

√
V ar(t̂y,m), where

z1−α/2 is the 1 − α/2 percentile of the standard normal distribution and if we denote the indicator

variable γ(m) as 1 if ty belongs to IC(m) and 0 otherwise, the coverage probability is calculated by

PC = 100%M−1
∑M

m=1 γ(m)

Main Results

The most relevant results of the simulation study are summarized in Tables 2 - 4:

Table 2: Relative bias (RB x 10−3) for the three estimators and the four sampling designs considered (scenarios 2 and 3).

Sampling Design Sample size FB H PML FB H PML

Design A - Design B nA nB Scenario 2 Scenario 3

srswor − srswor
1000 117 -1.0 -1.0 -1.1 -5.1 -5.0 -5.0

1000 160 -3.9 -3.9 -4.0 5.3 5.4 5.4

1000 59 -3.9 -3.9 -4.2 -0.3 -0.2 -0.4

1750 117 4.3 4.3 4.5 1.4 1.5 1.4

1750 160 -4.0 -4.0 -3.9 2.6 2.7 2.7

1750 59 0.6 0.6 0.7 -2.3 -2.2 -2.4

srswor − πps
1000 117 -1.5 -1.5 -1.6 4.0 4.1 4.0

1000 160 0.0 0.0 -0.2 2.0 2.1 2.0

1000 59 0.8 0.8 0.5 12.6 12.7 12.3

1750 117 -1.2 -1.2 -1.2 0.4 0.5 0.3

1750 160 0.4 0.4 0.5 0.3 0.3 0.2

1750 59 -2.6 -2.6 -2.5 -2.7 -2.6 -2.7

πps− srswor
1000 117 -1.4 -1.4 -1.5 -2.5 -2.4 -2.5

1000 160 -0.3 -0.3 -0.3 5.1 5.2 5.0

1000 59 5.6 5.6 5.4 3.9 4.0 3.8

1750 117 4.2 4.2 4.4 1.5 1.6 1.5

1750 160 1.0 1.0 1.2 3.3 3.3 3.3

1750 59 2.7 2.7 2.9 -0.8 -0.7 -0.9

πps− πps
1000 117 -0.9 -0.9 -0.9 -2.6 -2.4 -2.6

1000 160 0.4 0.4 0.3 10.2 10.3 10.2

1000 59 5.5 5.5 5.3 -4.8 -4.7 -4.9

1750 117 3.4 3.4 3.5 6.5 6.6 6.3

1750 160 3.5 3.5 3.6 -0.3 -0.3 -0.5

1750 59 4.9 4.9 5.0 1.9 2.0 1.8
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Table 3: Mean square error (MSE x 108) with the respective variance (s2 x 108) for the three estimators and the four sampling designs considered

(scenarios 2 and 3).

Sampling Design Sample size FB H PML FB H PML

Design A - Design B nA nB Scenario 2 Scenario 3

srswor − srswor
1000 117 1.52(1.51) 1.52(1.51) 1.52(1.51) 1.51(1.5) 1.51(1.5) 1.51(1.5)

1000 160 1.44(1.43) 1.44(1.43) 1.44(1.43) 1.57(1.56) 1.57(1.56) 1.57(1.56)

1000 59 1.52(1.51) 1.52(1.51) 1.52(1.51) 1.45(1.44) 1.45(1.44) 1.45(1.44)

1750 117 0.83(0.82) 0.83(0.82) 0.83(0.82) 0.79(0.78) 0.8(0.79) 0.8(0.79)

1750 160 0.85(0.84) 0.85(0.84) 0.85(0.84) 0.89(0.88) 0.89(0.88) 0.89(0.88)

1750 59 0.77(0.76) 0.77(0.76) 0.77(0.76) 0.83(0.82) 0.83(0.82) 0.84(0.83)

srswor − πps
1000 117 1.52(1.51) 1.52(1.51) 1.52(1.51) 1.48(1.47) 1.49(1.48) 1.48(1.47)

1000 160 1.4(1.39) 1.4(1.39) 1.4(1.39) 1.39(1.38) 1.39(1.38) 1.38(1.37)

1000 59 1.41(1.4) 1.41(1.4) 1.41(1.4) 1.55(1.54) 1.55(1.54) 1.55(1.54)

1750 117 0.85(0.84) 0.85(0.84) 0.85(0.84) 0.81(0.8) 0.81(0.8) 0.81(0.8)

1750 160 0.8(0.79) 0.8(0.79) 0.8(0.79) 0.83(0.82) 0.83(0.82) 0.83(0.82)

1750 59 0.86(0.85) 0.86(0.85) 0.86(0.85) 0.82(0.81) 0.82(0.81) 0.82(0.81)

πps− srswor
1000 117 2.15(2.14) 2.15(2.14) 2.15(2.14) 2.28(2.27) 2.28(2.27) 2.28(2.27)

1000 160 2.27(2.26) 2.27(2.26) 2.27(2.26) 2.32(2.31) 2.33(2.32) 2.32(2.31)

1000 59 2.26(2.25) 2.26(2.25) 2.26(2.25) 2.1(2.09) 2.1(2.09) 2.1(2.09)

1750 117 1.17(1.16) 1.17(1.16) 1.17(1.16) 1.23(1.22) 1.24(1.23) 1.23(1.22)

1750 160 1.22(1.21) 1.22(1.21) 1.22(1.21) 1.23(1.22) 1.23(1.22) 1.23(1.22)

1750 59 1.12(1.11) 1.12(1.11) 1.12(1.11) 1.32(1.31) 1.32(1.31) 1.32(1.31)

πps− πps
1000 117 2.34(2.33) 2.34(2.33) 2.34(2.33) 2.21(2.2) 2.22(2.21) 2.21(2.2)

1000 160 2.07(2.06) 2.07(2.06) 2.06(2.05) 2.18(2.17) 2.18(2.17) 2.18(2.17)

1000 59 2.38(2.37) 2.38(2.37) 2.38(2.37) 2.21(2.2) 2.21(2.2) 2.21(2.2)

1750 117 1.16(1.15) 1.16(1.15) 1.16(1.15) 1.38(1.37) 1.38(1.37) 1.38(1.37)

1750 160 1.25(1.24) 1.25(1.24) 1.25(1.24) 1.28(1.27) 1.28(1.27) 1.28(1.27)

1750 59 1.17(1.16) 1.17(1.16) 1.17(1.16) 1.23(1.22) 1.23(1.22) 1.23(1.22)

Table 4: Relative bias of the variance (RBV x 102) and Coverage Probability (CP) for the three estimators and the four sampling designs considered

(Scenarios 2 and 3).

Sampling Design Sample size FB H PML FB H PML

Design A - Design B nA nB Scenario 2 Scenario 3

srswor − srswor
1000 117 -0.06 ( 0.93 ) -0.06 ( 0.93 ) 0.15 ( 0.94 ) 1.13 ( 0.93 ) 1.11 ( 0.93 ) 0.57 ( 0.93 )

1000 160 4.47 ( 0.94 ) 4.48 ( 0.94 ) 4.34 ( 0.94 ) -0.90 ( 0.94 ) -0.87 ( 0.94 ) -1.48 ( 0.93 )

1000 59 -0.35 ( 0.94 ) -0.35 ( 0.94 ) -0.18 ( 0.95 ) 5.89 ( 0.94 ) 5.88 ( 0.94 ) 4.98 ( 0.94 )

1750 117 5.67 ( 0.95 ) 5.67 ( 0.95 ) 5.61 ( 0.95 ) 10.62 ( 0.96 ) 10.56 ( 0.96 ) 9.85 ( 0.96 )

1750 160 1.60 ( 0.94 ) 1.60 ( 0.94 ) 1.61 ( 0.94 ) -1.22 ( 0.94 ) -1.23 ( 0.94 ) -1.66 ( 0.94 )

1750 59 12.92 ( 0.95 ) 12.93 ( 0.95 ) 12.88 ( 0.95 ) 4.31 ( 0.94 ) 4.29 ( 0.94 ) 3.82 ( 0.94 )

srswor − πps
1000 117 -0.15 ( 0.93 ) -0.15 ( 0.93 ) -0.12 ( 0.93 ) 3.38 ( 0.95 ) 3.32 ( 0.95 ) 3.01 ( 0.95 )

1000 160 8.45 ( 0.95 ) 8.45 ( 0.95 ) 8.39 ( 0.95 ) 11.30 ( 0.96 ) 11.32 ( 0.96 ) 10.81 ( 0.96 )

1000 59 8.79 ( 0.95 ) 8.80 ( 0.95 ) 9.05 ( 0.95 ) 1.73 ( 0.96 ) 1.76 ( 0.96 ) 1.11 ( 0.96 )

1750 117 1.76 ( 0.95 ) 1.76 ( 0.95 ) 1.78 ( 0.95 ) 7.55 ( 0.94 ) 7.56 ( 0.94 ) 7.13 ( 0.95 )

1750 160 8.95 ( 0.95 ) 8.95 ( 0.95 ) 8.85 ( 0.95 ) 5.57 ( 0.95 ) 5.56 ( 0.95 ) 4.82 ( 0.95 )

1750 59 0.58 ( 0.94 ) 0.58 ( 0.94 ) 0.51 ( 0.94 ) 6.16 ( 0.95 ) 6.15 ( 0.95 ) 5.42 ( 0.95 )

πps− srswor
1000 117 2.40 ( 0.94 ) 2.40 ( 0.94 ) 2.62 ( 0.94 ) -0.36 ( 0.93 ) -0.33 ( 0.93 ) -3.53 ( 0.93 )

1000 160 -2.84 ( 0.93 ) -2.84 ( 0.93 ) -2.59 ( 0.93 ) -1.42 ( 0.93 ) -1.46 ( 0.93 ) -4.25 ( 0.93 )

1000 59 -2.49 ( 0.94 ) -2.48 ( 0.94 ) -2.10 ( 0.93 ) 7.90 ( 0.94 ) 7.97 ( 0.94 ) 4.55 ( 0.94 )

1750 117 9.37 ( 0.96 ) 9.37 ( 0.96 ) 9.45 ( 0.96 ) 5.41 ( 0.95 ) 5.39 ( 0.95 ) 2.22 ( 0.94 )

1750 160 5.71 ( 0.94 ) 5.71 ( 0.94 ) 5.60 ( 0.94 ) 5.63 ( 0.94 ) 5.61 ( 0.94 ) 2.53 ( 0.94 )

1750 59 13.09 ( 0.95 ) 13.09 ( 0.95 ) 13.27 ( 0.95 ) -0.86 ( 0.93 ) -0.88 ( 0.93 ) -3.76 ( 0.93 )

πps− πps
1000 117 -5.05 ( 0.93 ) -5.05 ( 0.93 ) -4.81 ( 0.93 ) 2.33 ( 0.93 ) 2.29 ( 0.93 ) -0.68 ( 0.93 )

1000 160 7.94 ( 0.95 ) 7.95 ( 0.95 ) 8.32 ( 0.94 ) 8.29 ( 0.95 ) 8.27 ( 0.95 ) 4.50 ( 0.94 )

1000 59 -4.24 ( 0.92 ) -4.24 ( 0.92 ) -4.31 ( 0.92 ) 2.17 ( 0.91 ) 2.16 ( 0.91 ) -1.02 ( 0.91 )

1750 117 9.70 ( 0.95 ) 9.70 ( 0.95 ) 9.65 ( 0.95 ) -3.76 ( 0.92 ) -3.75 ( 0.92 ) -6.45 ( 0.92 )

1750 160 1.40 ( 0.95 ) 1.40 ( 0.95 ) 1.17 ( 0.95 ) 2.62 ( 0.93 ) 2.61 ( 0.93 ) -0.52 ( 0.93 )

1750 59 9.81 ( 0.95 ) 9.82 ( 0.95 ) 9.90 ( 0.95 ) 6.17 ( 0.94 ) 6.13 ( 0.94 ) 2.98 ( 0.94 )

Conclusions

The property of unbiasedness of the Hartley (1962) and the Fuller-Burmeister (1972) estimators was

observed empirically. Also, for the Skinner and Rao (1996) estimator the relative bias for all the

sampling designs considered were negligible confirming the asymptotic unbiasedness of the Pseudo

Maximum Likelihood Estimator. Regarding the empirical Mean Square Error, this one decreases

when the sample size of the first stage in the frame A increases, but not when the sample size in the

frame B increases. Comparing scenarios 2 and 3, the empirical Mean Square Errors for the scenario

2 are smaller than the empirical Mean Square Errors for the scenario 3. The values for the relative

bias of the variance are small, with the three estimators behaving similarly. The relative bias of the

variance is smaller in the scenario 2 than in the scenario 3. Finally, the coverage probability is nearly
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the same for most of the considered sampling designs in both scenarios but these probabilities vary

from 92% to 97%.
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