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Introduction 

Due to the limited resource for possible health cares, the evaluation of their economic 

benefits is needed.  Let 
jC  and 

jE  be the mean cost and mean effectiveness associated 

with the ith health care for j =1 (treatment), 2 (control).  A comparison of the two health 
cares is usually made based on the incremental cost-effectiveness ratio (ICER):    

ICER=( 1 2C C  )/( 1 2E E  ),                                     (1) 

which is, relative to the control health care, the additional cost of the treatment health care for 
each additional unit of health benefit.  The interval estimation for the ICER has been 
extensively discussed by, for example, Chaudhary and Stearns (1996), Laska et al. (1997), 
Polsky et al (1997), and among others.   

Let 1 2C C  and 1 2E E  be the estimators of 1 2C C   and 1 2E E  , 

respectively.  In general, the relevant confidence intervals are all constructed based on the 

ratio estimator, that is, 1 21 2 E E(C C ) /( ) , and hence suffer a statistical difficulty.  Note 

that the Fieller confidence interval is conventionally constructed for the ICER.  However, 
Fieller’s interval was originally developed for the ratio of two binormally distributed variables.  
Also, note that, in an ICER plane with mean cost-difference in y-axis and mean 
effectiveness-difference in x-axis, a line through the origin with slope  , representing a 

willing to pay, is often employed as a reference.  Therefore, a point below (above) the 
reference line in the plane indicates that the first health care is superior (inferior) to the 
second one.  However, the negative increments are misleading and the interpretation of 
ICER is ambiguous, especially, when two points in quadrants I and III, respectively, give the 
same ratio but one locates above and the other lies below the reference line.   
 To avoid the ambiguity of the ICER with negative increments, we propose herein to 
measure the ratio of cost and effectiveness (RCE) for the jth health care as follows: 

 for 1 2
j jj C E/ j , .                                               (2) 

The RCE has a better understandable meaning as the mean cost per unit of effectiveness.  If 
the effectiveness of the health care is measured by its mean lifetime, then RCE can be 
interpreted as the mean cost for prolong, on the average, one unit of lifetime.  In fact, a 
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comparison of the two health cares can further be made by contrasting the related RCEs.   
In fact, both the cost and lifetime of subjects who are undertaking the health care are 

usually right-skewed.  To make the evaluation of RCE widely applicable in practical 
situations, we consider employing different generalized gamma (GG) distributions (Cox et al., 
2007) to describe the marginal distributions of cost and lifetime variables, respectively.  
Moreover, to account for possible correlation between the two variables, we suggest using an 
appropriate copula function (Nelson, 2006) to link the two GG marginal distributions for 
describing their joint distribution.  Therefore, in this paper, we are primarily concerned with 
a parametric interval estimation for the individual RCE.   

 
Interval estimation for the ratio of cost and effectiveness  

 Let  and i iC T  be the cost and lifetime variables, respectively, for subject i, 1i ,...,n .  
Suppose that the marginal distribution of  iC is a generalized gamma distribution, denoted by 

C C CGG( , , )   and that of iT  is T T TGG( , , )   . Then, the related probability density 

function (pdf) is given by 
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Moreover, we assume that ( , i iC T ) is distributed according to the joint distribution 
Copula( , C TGG GG ; ), where  and C TGG GG  are the distribution functions of cost and 

lifetime variables, respectively, and Copula (u,v; ) is a copula function that links distribution 
functions u and v.  For example, if we employ the Frank copula, then we have the joint 
distribution function
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Note that, in this paper, we also consider the clayton copula function as given by 
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To find the maximum likelihood estimates (MLEs) of the mean cost and mean lifetime 

based on the observed data {( , i ic t ), i=1,…, n}, we need to construct the likelihood function 

of the related parameters.  Note that the joint pdf for Frank copula is 
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and that for Clayton copula is 
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Therefore, the likelihood function of θ C C C T T T( , , , , ), ,        is 
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As usual, we obtain the MLEs of θ , denoted by θ̂ , and find the estimators of the mean cost 

and mean lifetime, denoted by ˆ
C  and ˆ

T , respectively.  Since both the estimators are 

functions of θ̂ , we apply Delta’s method to find the variances of the estimators and then 

obtain their estimators as 2 ˆ( )Cs   and 2 ˆ( )Ts  , respectively.  We also find the estimated 

covariance between ˆ
C  and ˆ

T  and denoted it by s( ˆ
C , ˆ

T ). 

Let 
a

z  be the 100a-th percentile of a standard normal distribution.  The original 100

(1  )% Fieller confidence interval is  
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,                (3) 

In this paper, we consider the corresponding modified Fieller confidence interval, that 
is, 
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           (4) 

In the MF interval, we use the estimated means instead of the simple sample averages. 
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To adapt to the non-binormally distributed cost and lifetime variables, Wang and Zhao 

(2008) suggest a bootstrap Fieller (BF) confidence interval where 
1 / 2

z


 is replaced by a 

more suitable critical value obtained from a bootstrap method.  In this paper, we also 
consider the bootstrap modified Fieller (BMF) confidence interval.  The algorithm is stated 
in the following: 
Step 1. Generate a random samples of size n from the paired cost and lifetime data. 

Step 2. Find ˆ b

C
 , ˆ 

b

T
  and the associated variances and covariance based on the   

bootstrap sample generated on Step 1, and compute 
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Step 3. Repeat the first two steps B times and obtain the bootstrap replications 

       * ˆ( ),  1,...,bT b B  . 

Step 4. Let aq  be the 100a-th empirical percentile of * ˆ ( ) T   based on * ˆ( ),bT   

 1,...,b B , then the 100(1  )% confidence interval for   is given by 
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Again, the original bootstrap Fieller (BF) interval uses the sample average cost and  
average lifetime. 
 
Simulation study 

We conducted a simulation study to investigate the coverage probability and length of 
the proposed 95% confidence intervals, MF and BMF, and the previous ones, F and BF.  
Note that the critical values used for Bootstrap procedures are obtained based on 1,000 
replicates.  We assume a Weibull marginal distribution with scale parameter 2819.8 and 
shape parameter 0.5, denoted by W(2819.8, 0.5), for the cost variable and W(11.6, 1.9) for 
lifetime variable.  Moreover, we consider the correlation with Kendal’s   ranging over 0.2, 

0.5 and 0.8 under the Frank and Clayton copula functions, respectively.  The coverage 
probability and length of each confidence interval are respectively estimated as the proportion 
of 1,000 intervals correctly including the true ratio of cost-effectiveness and the average 
length of the 1,000 intervals.  To see if the procedure can give a reasonable one-sided 
confidence bound, we also estimate the upper (lower) error rate as the proportion of 1,000 
intervals with upper (lower) bound smaller (larger) than the true ratio.  Therefore, the 
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standard deviation of the estimated coverage probability is about 0.007(= 0.95x0.05 /1000 ) 

and that of the one-sided error rate is roughly 0.005(= 0.025x0.975 /1000 ).  The related 

results are presented in Tables I and II, where we use + or – to note the estimate if it is more 
than two standard deviations from its expected value.  

The results in Table I show that either the MF or the BMF interval maintains well its 
confidence level at 95%.  Moreover, since the coverage probability of the F interval is 
smaller than 95%, it is not surprising that the length of the F interval is shorter than that of the 
MF interval.  The BF is also, in general, not able to keep its confidence level, but, for some 
situations, it has a wider length than does the corresponding BMF interval.  In addition, the 
results in Table II reveal that all the F, BF and MF intervals are not symmetric on the error 
rate performance.  In these situations, the proposed BMF interval is the only one that can be 
used to construct the upper or lower confidence bound for the ratio of cost-effectiveness. 

 

Table I.  Estimated coverage probability and length of 95% confidence intervals for the 
ratio of cost-effectiveness 

Copula   n 
 CP  Length 

 F BF MF BMF F BF MF BMF 

Frank 0.2 200  92.2 - 95.4  94.6  94.5   364.85  422.23  400.39  404.97  

 500  93.4 - 92.8 - 94.4  95.3   237.09  228.46  246.15  254.45  

 0.5 200  93.1 - 92.6 - 94.2  95.8   344.56  365.15  372.95  394.52  

 500  91.8 - 92.6 - 94.4  95.5   220.49  212.72  232.87  223.14  

 0.8 200  91.5 - 95.0  94.7  96.1   323.07  351.45  328.68  366.26  

 500  92.6 - 94.5  94.5  95.8   204.90  218.29  205.89  222.96  

Clayton 0.2 200  92.6 - 93.2 - 94.2  94.1   371.61  386.24  404.15  401.73  

 500  93.5 - 97.3 + 94.8  95.2   237.99  262.61  249.25  242.38  

 0.5 200  90.5 - 94.8  94.3  94.2   350.57  383.18  393.63  364.31  

 500  93.7  92.8 - 95.4  94.3   226.59  223.30  240.74  228.04  

 0.8 200  91.6 - 94.2  94.0  94.4   328.11  371.78  335.80  311.69  

 500  93.4 - 96.3  95.0  95.7   210.55  238.64  209.48  212.88  
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 Table II.  Estimated 100xlower and upper error rates of 95% confidence intervals for the 
ratio of cost-effectiveness 

Copula   n 
 F  BF  MF  BMF 

 L U  L U  L U  L U 

Frank 0.2 200  0.5 - 7.3 +  2.3  2.3   0.2 - 5.2 +  2.5  3.0  

 500  1.1 - 5.5 +  2.4  4.8 +  0.6 - 5.0 +  2.2  2.5  

 0.5 200  0.1 - 6.8 +  2.0  5.4 +  0.0 - 5.8 +  2.0  2.2  

 500  1.2 - 7.0 +  2.4  5.0 +  0.3 - 5.3 +  1.8  2.7  

 0.8 200  0.3 - 8.2 +  0.9 - 4.1 +  0.2 - 5.1 +  1.5  2.4  

 500  0.5 - 6.9 +  3.0  2.5   0.1 - 5.4 +  1.9  2.3  

Clayton 0.2 200  0.8 - 6.6 +  2.1  4.7 +  0.2 - 5.6 +  2.5  3.4  

 500  0.7 - 5.8 +  0.9 - 1.8   0.3 - 4.9 +  2.5  2.3  

 0.5 200  0.6 - 8.9 +  2.8  2.4   0.1 - 5.6 +  3.0  2.8  

 500  1.1- 5.2 +  2.2  5.0 +  0.3 - 4.3 +  2.8  2.9  

 0.8 200  0.2 - 8.2 +  2.0  3.8 +  0.1 - 5.9 +  2.6  3.0  

 500  0.7 - 5.9 +  1.0 - 2.7   0.6 - 4.4 +  2.0  2.3  
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