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Introduction

Being a popular graphical tool for assessing parametric distributional assumption, for data from
(log)location-scale, the probability plot can also be used to estimate the location and scale param-
eters by fitting a line through the plot (see Section 6 in Meeker & Escobar 1998). The parameters
can be easily estimated through this graphical method especially for censored data. The property
of the graphical estimators (GEs) and their comparison to maximum likelihood estimators (MLEs)
are discussed in many censoring configurations (Nair 1984, Somboonsavatdee et al. 2007, Genschel
& Meeker 2010, and Olteanu & Freeman 2010). Besides being theoretically less efficient to MLEs in
most cases (Nair 1984, Somboonsvatdee et al. 2007, and Genschel & Meeker 2010), the GEs are still
popular used among reliability engineers.

Just like any other estimators, the GEs can be biased, therefore, in this study, we have look
into how we would correct the biases of the GEs through bootstrap method. There have been some
previous works on the reduction of bias for the MLEs (Thoman & Bain 1984, and Hirosi 1999) and
GEs (Zhang et al. 2006) but, not through bootstrap method. Due to the limitation of number of pages
allowed in this paper, we mainly focus on the results for smallest extreme value (SEV) distribution
(or Weibull for log-location-scale distribution) with complete data and Type-II censored (also known
as failure-censored) data where the results for (log)normal distribution are briefly discussed in the
discussion section.

Graphical Estimators for (Log-)Location-Scale Distribution

The commonly known location-scale distributions are normal, logistic, and SEV distributions
(or lognormal, loglogistics, and Weibull distributions for log-location-scale distributions). If F (µ, σ)
is a location-scale distribution with µ and σ being its location and scale parameters, it follows that
xq = µ + σF−1

0,1 (q) where xq is the q−th quantile from F (µ, σ) and F−1
0,1 (·) is the quantile function

of F (0, 1). With this property, the ordinary least squares (OLS) estimators for intercept and slope
from the probability plot, by having sample order statistics on y-axis and their corresponding theoreti-
cal quantiles from F (0, 1) on x-axis, can be used as the estimators of the location and scale parameters.

As the focus of this study will be on the SEV distribution with complete and Type-II censored
data, the GEs is simply the OLS estimators from a linear plot of {Fi, X(i)}’s for i = 1, 2, . . . , r ≤ n

with X(i) is the i−th sample ordered statistics and Fi = − log(− log(qi)) where qi = i−.5
n is a mean-

rank plotting position, r is the number of uncensored data, and n is sample size. Therefore, the GEs
are

σ̂ =
∑r

i=1(X(i) − X̄r)(Fi − F̄r)∑r
i=1(Fi − F̄r)2

and µ̂ = X̄r − σ̂F̄r

where X̄r = 1
r

∑r
i=1 X(i) and F̄r = 1

r

∑r
i=1 Fi. One can also use different choice of the plotting position
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such as median-rank plotting position (Barnett 1975, and see page 276 in Nair & Somboonsvatdee
2010) but, the results should not be significantly different especially for large sample.

Bootstrap-Based Bias Correction

The bias of the estimator θ̂ of a parameter θ can be computed by Biasθ(θ̂) = E(θ̂) − θ. As we
can see that the bias of an estimators can only be computed when the true value of the parameter
is known, however, the bias can also be estimated by using the popular bootstrap method (Efron &
Tibshirani 1994). The bootstrap-based estimated bias can be computed as below,

̂
Biasθ(θ̂) =


 1

B

B∑

j=1

θ̂B
j


− θ̂

where θ̂B
j ’s are generated through the bootstrap simulation. Then, the estimator are bias-corrected

by subtracting the estimated bias from the estimator,

θ̃bbc = θ̂ − ̂
Biasθ(θ̂) = 2θ̂ −


 1

B

B∑

j=1

θ̂B
j




where θ̃bbc is the bootstrap-based bias corrected estimator for θ.

In this study, it is only appropriate to use parametric bootstrap method since we are dealing
with (log-)location-scale distribution which is parametric distribution. The parameters of interested
are location (µ) and log-scale [log(σ)] parameters so that performances of the estimators are inde-
pendence the value of µ and log(σ), so we need only consider the case µ = 0 and σ = 1 . The
(bootstrap-based) bias corrected graphical estimators (BCGEs) are computed as described above.

Simulation Results

The results are based on the simulation with the simulation size N of 5000. The data are
randomly generated from standard SEV distribution (µ = 0 and σ = 1) with (Type-II) censoring
proportion p = 0 (no censoring), 0.2, .04, 0.6, 0.8 and sample size n =10, 25, 50, 75, 100 . For each
combination of censoring proportion p and sample size n, 5000 GEs of µ and log(σ) are obtained, then
for each pair of GEs of µ and log(σ), the parametric bootstrap with bootstrap simulation size B of
5000 is used in order to estimate their biases, then used to obtain the corresponding BCGEs of that
pair of the GEs.

Tables 1 and 2 show the simulation results for GEs and BCGEs of location (µ) and log-scale
[log(σ)] parameters. The results includes bias, variance, mean square error (MSE) of the estimators.
Moreover, the results in the tables also include the two versions of relative efficiency (RE) for compar-
ing the efficiency of the BCGE to the GE. RE1 is computed by the ratio of variances of GE to BCGE
and RE2 is similarly computed by the ratio of MSEs. If the relative efficiency is greater than 1, this
implies that that BCGEs are more efficient than GEs; if less than 1, this implies that BCGEs are less
efficient; and if equal to 1, this implies that both estimators are equally efficient.

Let consider the simulation results for the estimators of location parameter (µ) from Table 1.
We can see that the biases of BCGEs are very close to 0 in all scenarios. This is to be expected
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Table 1: Estimation of Location Parameter µ — Type-II Censoring

(µ̂) → GE (µ̂) → BCGE

Censoring Proportion p Sample Size n Bias Var MSE Bias Var MSE RE1 RE2

0 10 -0.054 0.119 0.122 -0.002 0.118 0.118 1.01 1.04

25 -0.029 0.048 0.049 -0.001 0.048 0.048 1.01 1.03

50 -0.014 0.024 0.024 0.000 0.024 0.024 1.00 1.01

75 -0.010 0.016 0.016 0.000 0.016 0.016 1.00 1.01

100 -0.003 0.012 0.012 0.000 0.011 0.011 1.00 1.00

0.2 10 -0.055 0.163 0.166 -0.002 0.167 0.167 0.98 0.99

25 -0.019 0.066 0.066 0.000 0.066 0.066 0.99 0.99

50 -0.010 0.033 0.033 0.000 0.033 0.033 0.99 1.00

75 -0.009 0.023 0.023 0.000 0.023 0.023 0.99 1.00

100 -0.007 0.017 0.017 0.000 0.018 0.018 1.00 1.00

0.4 10 -0.058 0.294 0.298 -0.003 0.311 0.310 0.95 0.96

25 -0.032 0.128 0.129 -0.001 0.132 0.132 0.97 0.98

50 -0.023 0.067 0.067 0.000 0.068 0.068 0.98 0.99

75 -0.019 0.046 0.046 0.000 0.047 0.047 0.98 0.99

100 -0.008 0.036 0.036 0.000 0.036 0.036 0.99 0.99

0.6 10 -0.100 0.719 0.729 -0.007 0.794 0.794 0.91 0.92

25 -0.039 0.310 0.311 -0.001 0.322 0.322 0.96 0.97

50 -0.031 0.172 0.173 0.000 0.178 0.178 0.97 0.97

75 -0.029 0.112 0.113 0.000 0.116 0.116 0.97 0.98

100 -0.028 0.087 0.088 0.000 0.090 0.090 0.97 0.98

0.8 10 -0.163 3.302 3.328 -0.014 3.795 3.794 0.87 0.88

25 -0.116 1.233 1.246 -0.007 1.360 1.359 0.91 0.92

50 -0.073 0.684 0.689 -0.002 0.727 0.726 0.94 0.95

75 -0.075 0.477 0.482 -0.002 0.507 0.507 0.94 0.95

100 -0.046 0.390 0.392 -0.001 0.405 0.405 0.96 0.97

since BCGEs are the bias corrected estimators from GEs. In most scenarios, except when p = 0, the
variance of BCGEs are larger than those of GEs. It is expected that the variances of BCGEs would
be larger than those of GEs due to the effect from the estimated biases. Interestingly, at censoring
proportion p = 0, the variances of BCGEs are less than or equal to those of GEs. In scenarios with
some censoring (p 6= 0), the MSEs of BCGEs are larger than those of GEs, however, the MSEs of
BCGEs are getting closer or equal to those of GEs when the sample size n is getting larger. With no
censoring (p=0), RE1 and RE2 are greater than 1 for smaller samples (n ≤ 25 for RE1 and n ≤ 75
for RE2 ) but only by little, and are equal to 1 for larger sample (n ≥ 50 for RE1 and n = 100 for
RE2). With some censoring (p 6= 0), RE1 and RE2 are less than 1 especially from small sample, then
getting closer to 1 as the sample size increases. Moreover, at fixed sample size n, the RE1 and RE2 are
decreasing as the censoring proportion increases. By considering values of RE1 and RE2, the BCGEs
are somewhat equally efficient or a bit more effcient to GEs when used for complete data, however,
the BCGEs are less efficient than GEs when the censoring proportion p increases and when the sample
size n is small.

Table 2 shows the simulation results for the estimators of log-scale parameter [log(σ)]. We can
obviously see that the biases of BCGEs are all zeroes. This is due to the fact that the estimated bias
is independent to both values of location (µ) and scale parameter (σ). The variances for BCGEs and
GEs are the same which leads to the values of MSEs of BCGEs being less than those of GEs. With
equal values of variances, the RE1 are equal to 1 for all scenarios, and with smaller values of MSEs of
BCGEs, the RE2 are all greater than 1. Overall BCGEs performs better than GEs either using the
criteria of variances or MSEs due to the fact that the BCGEs are unbiased but the variances are the
same as those of GEs.
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Table 2: Estimation of Log-Scale Parameter log(σ) — Type-II Censoring

[log(σ̂)] → GE [log(σ̂)] → BCGE

Censoring Proportion p Sample Size n Bias Var MSE Bias Var MSE RE1 RE2

0 10 -0.082 0.103 0.110 0.000 0.103 0.103 1.00 1.07

25 -0.040 0.040 0.042 0.000 0.040 0.040 1.00 1.04

50 -0.022 0.020 0.021 0.000 0.020 0.020 1.00 1.02

75 -0.015 0.014 0.014 0.000 0.014 0.014 1.00 1.02

100 -0.013 0.010 0.011 0.000 0.010 0.010 1.00 1.02

0.2 10 -0.113 0.150 0.163 0.000 0.150 0.150 1.00 1.08

25 -0.051 0.064 0.067 0.000 0.064 0.064 1.00 1.04

50 -0.024 0.032 0.032 0.000 0.032 0.032 1.00 1.02

75 -0.021 0.022 0.022 0.000 0.022 0.022 1.00 1.02

100 -0.016 0.017 0.017 0.000 0.017 0.017 1.00 1.01

0.4 10 -0.157 0.234 0.258 0.000 0.234 0.234 1.00 1.11

25 -0.069 0.094 0.098 0.000 0.094 0.094 1.00 1.05

50 -0.041 0.049 0.050 0.000 0.049 0.049 1.00 1.03

75 -0.029 0.033 0.034 0.000 0.033 0.033 1.00 1.03

100 -0.020 0.025 0.025 0.000 0.025 0.025 1.00 1.02

0.6 10 -0.254 0.410 0.475 0.000 0.410 0.410 1.00 1.16

25 -0.099 0.151 0.161 0.000 0.151 0.151 1.00 1.06

50 -0.053 0.077 0.080 0.000 0.077 0.077 1.00 1.04

75 -0.043 0.051 0.053 0.000 0.051 0.051 1.00 1.04

100 -0.036 0.040 0.041 0.000 0.040 0.040 1.00 1.03

0.8 10 -0.656 1.601 2.031 0.000 1.601 1.600 1.00 1.27

25 -0.225 0.356 0.406 0.000 0.356 0.356 1.00 1.14

50 -0.114 0.166 0.179 0.000 0.166 0.166 1.00 1.08

75 -0.086 0.109 0.116 0.000 0.109 0.109 1.00 1.07

100 -0.065 0.086 0.091 0.000 0.086 0.086 1.00 1.05

Discussion

From the simulation results, we can see that the bootstrap-based bias correction improve the
performance of the graphical estimator for log-scale parameter [log(σ)], however, not for location pa-
rameter. All of the results are due to the effects from the bootstrap-based estimated bias which are
discussed below.

Estimated Bias for log(σ̂)
Suppose X1, X2, . . . , Xn are iid random variables from SEV (µ, σ). Let σ1 = 1, with σ̂ described

in earlier section, it follows that σ̂ = σ× σ̂1 and log(σ̂) = log(σ) + log(σ̂1) where σ̂1 is computed from
X∗

1 , X∗
2 , . . . , X∗

n with X∗
i = Xi−µ

σ . Therefore, it follows that

Biaslog(σ)[log(σ̂)] = E{log(σ) + log(σ̂1)} − log(σ) = E{log(σ̂1)} = Biaslog(σ1)[log(σ̂1)].

We can see that the Biaslog(σ)[log(σ̂)] is independent to both values of µ and σ, and can be accu-
rately estimated through the bootstrap with large number of bootstrap simulation. With the sample
size n and censoring proportion p being consistent with the simulations in this study, one can use
the values from Table 2 to get the bias of log(σ̂) and to compute BCGE of log(σ). For example, at
sample size of n = 50 with censoring proportion p = 0.4, if the GE for log(σ) is 1.6, then from Table 2,
its corresponding bias is -0.041. Therefore, the corresponding BCGE for log(σ) is 1.6 - (-0.041)= 1.641.

Estimated Bias for µ̂

Similarly, suppose X1, X2, . . . , Xn are iid random variables from SEV (µ, σ). Let µ0 = 0, with µ̂

described in earlier section, it can be shown that µ̂ = µ+σ̂µ̂0 with µ̂0 is computed from X∗
1 , X∗

2 , . . . , X∗
n.
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Therefore, it follows that
Biasµ(µ̂) = E{µ− σ̂µ̂0} − µ = E{σ̂µ̂0}.

We can see that the bias depends on the value of σ̂ which is a function of the data and, more impor-
tantly, which is random. Therefore, while the bias of the estimator is being adjusted, the variance of
the estimator will increase as seen in the results in Table 1. Unlike the bias for log(σ̂), the bias for µ̂

cannot be accurately estimated through the bootstrap simulation. This is due the fact that the value
of µ̂ and σ̂ from the sample will be treated as the parameters for generating the bootstrap simulation,
and of course, the value of log(σ̂) from the sample will definitely affect how well the estimation of the
bias of µ̂ is.

Other factors that influence the performance of the BCGEs are the sample size n and the cen-
soring proportion p. Since at the sample sample size n and large censoring proportion p, the GEs tend
to have large absolute value of the biases, therefore, by bootstrap-based bias corrected, this would
improve the performance of the graphical estimators especially for log-scale parameter [log(σ)] .

As mentioned earlier that due to the limitation of the number of pages, we only focus the results
from SEV distribution. We have also done some simulation study for (log)normal distribution with
the same set of sample size n and censoring proportion p. The results are very similar to those of
SEV distribution where BCGEs do better than GEs for log-scale parameter [log(σ)] estimation but,
do worse than GEs or do about equally well for location parameter µ) estimation. The results should
be similar for all (log-)location-scale distributions for the data under Type-II censoring.

We want to emphasize that the intention of this study is not to promote the use of the graphical
estimators over the MLEs or other types of estimators, but to explore how would we further improve
the performance of the graphical estimation method, and to study its property. To conclude this study,
with complete or type-II censored data, if one choose to use the graphical estimators, our suggestion is
to use BCGEs over GEs only for estimating (log-)scale parameter [log(σ)] especially at small sample
size n and high censoring proportion p.
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ABSTRACT

Probability plots are popular graphical tools used by reliability engineers and other practitioners
for assessing parametric distributional assumptions. When used for data from (log)location-scale fam-
ilies, the location and scale parameters can be estimated by fitting a line through the plot. This method
is quick-and-easy especially when used for censored data. The commonly known problem of this graph-
ical estimation is its bias. In this study, we approximate the bias through the bootstrap method, and
then make adjustment to the graphical estimators. The properties of the bootstrap-based bias corrected
graphical estimators are studied through simulation for selected distributions with complete and data
and right-censored data under Type-II censoring. We find that with bootstrap-based bias correction, the
efficiency of the graphical estimators is improved for log-scale estimation especially for small sample
size and high censoring proportion. The effect from the censoring proportion on the improvement of
the estimators and the relationship between true bias from a sample and its approximated bias are also
studied and discussed.
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