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1 Introduction

Estimating complex parameters such as Gini indices or other measures of inequality with good precision
is particularly important nowadays. In the European Statistics on Income and Living Conditions (EU-
SILC) survey, several indicators for studying social inequalities and poverty are considered including
the Gini index, the at-risk-of-poverty rate, the quintile share ratio and the low-income proportion.
Estimating totals or means by taking into account auxiliary information has been extensively studied
in a finite population context. In the model-assisted approach, both linear and non-parametric models
have been explored and non-parametric models have shown their superiority in terms of precision if the
linear model fitting the study variable using the auxiliary variable is misspecified. However, there is
much less literature on complex parameters (see Harms and Duchesne, 2006, for quantiles and Berger
and Skinner, 2003, for the low-income proportion).

In the present paper, we consider complete univariate quantitative auxiliary information and we
introduce a general class of complex parameter estimators with weights derived using a nonparametric
model-assisted approach. These weights do not depend on the study variable and can be used for
any other survey variable but also for any survey parameter to estimate. Having a unique system of
weights is very important in multipurpose surveys such as the EU-SILC. Using these weights, we define
a class of substitution estimators for complex parameters and we derive their asymptotic variance in a
general context using the influence function approach by Deville (1999). Interestingly, the asymptotic
variance and consequently the precision of the proposed estimators depend on the residuals from the
fitted values of the linearized variable of the parameter of interest.

Because linearized variables may be quite complex, linear models are unlikely to perform well
and are outperformed by non-parametric models even if the study variable is linearly related with the
auxiliary one. The theory developed in Goga and Ruiz-Gazen (2011) is presented using a general non-
parametric framework. Many details are given for B-spline estimators of the Gini index. Furthermore,
the asymptotic and finite-sample performances of the proposed estimators are illustrated using two
real data sets. Specifically, point and confidence intervals estimation of the Gini index are derived for
measurements of television audience.

In section 2, we briefly recall the nonparametric model-assisted estimator for finite population
totals and in section 3, we generalize the method for complex parameters. Section 4 gives the B-spline
estimation for the Gini index and section 5 presents the empirical studies.
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2 Nonparametric model-assisted estimation of totals

Consider a finite population U of N elements labeled k = 1, . . . , N. Let yk (resp. zk), the value of the
study (resp. auxiliary) variable Y (resp. Z) for the kth population element. The values z1, . . . , zN
are assumed to be known for the entire population (i.e., complete information). In this section, the
parameter to estimate is the finite population total ty =

∑
U yk. A sample s is selected from U

according to a sampling design p(·) of fixed size n. Many approaches can be used to take into account
auxiliary information Z and thus improve on the Horvitz-Thompson estimator t̂y,HT =

∑
s yk/πk.

Note that πk = Pr(k ∈ s) > 0 are the first-order inclusion probabilities. The goal is to derive a
weighted linear estimator t̂wy =

∑
swksyk of ty, such that the sample weights wks do not depend on

the study variable values yk but include the values zk, for all k ∈ U. Among the different methods for
deriving the wks, we focus on the model-assisted approach. The construction of the model-assisted
(MA) class of estimators t̂wy is based on a superpopulation model ξ:

ξ : yk = f(zk) + εk(1)

where the εk are independent random variables with mean zero and variance v(zk). Recently, Breidt
& Opsomer (2000) proposed local linear estimators and Breidt et al. (2005) and Goga (2005) used
nonparametric spline regression for estimating the total ty. Let f̂y,k be the estimator of f(zk) obtained
using one of the three nonparametric methods mentioned above. The nonparametric generalized
difference estimator of the finite population total is:

t̂y,diff =
∑
s

yk − f̂y,k
πk

+
∑
U

f̂y,k.(2)

This estimator is still design unbiased but it is asymptotically model unbiased because nonparametric
estimators f̂y,k are always biased for fk. The estimators f̂y,k are usually obtained by a least square
method (weighted, penalized or ordinary) and in general, we write

f̂y,k = G′kyU , for all k ∈ U(3)

where the vector Gk depends on the population values zk, for all k ∈ U but does not depend on Y.
As in the parametric case, we estimate f̂y,k by f̃y,k using the sampling design,

f̃y,k = Ĝ′ksys, for all k ∈ U(4)

where Ĝ′ks is a design-based estimator of G′k and ys = (yk)k∈s is the vector of sample values of Y.
Plugging f̃y,k into (2) yields the following nonparametric model-assisted estimator for ty,

t̂y,np =
∑
s

yk − f̃y,k
πk

+
∑
U

f̃y,k.(5)

Nonparametric model-assisted estimators (NMA) can be written as weighted sums of the sampled
observations

t̂y,np =
∑
s

wksyk(6)

where the weights depend only on the sample and on the auxiliary information. The expression of
wks depends on the nonparametric method chosen, as discussed in Breidt and Opsomer (2000), Breidt
et al. (2005) and Goga (2005). Under mild hypothesis, the variance of t̂y,np may be approximated
by the variance of t̂y,diff. This result states that all the NMA estimators are bias robust, regardless of
whether the model is valid. Besides, they bring an improvement over parametric methods and the
Horvitz-Thompson estimator when the relation between Y and Z is not linear. In the latter, the
residuals yk − f̂y,k will be smaller than under a parametric smoother, which explains the diminution
of the design variance of NMA estimators.
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3 Nonparametric model-assisted estimation of complex parameters

Let us consider the estimation of some nonlinear parameters Φ by taking into account complete
auxiliary information Z. Examples of nonlinear parameter of interest Φ are the ratio, the empirical
distribution function or the Gini coefficient. A parameter Φ may depend on one or several variables
of interest but we consider a single auxiliary variable Z. As such, we aim to provide a general method
for estimating Φ using Z by considering the functional approach introduced by Deville (1999). The
methodology consists in writing Φ as a functional T of a discrete and finite measure M =

∑
U δyk

such
that there is unity mass on each point yk, k ∈ U and zero mass elsewhere, Φ = T (M). A substitution
estimator of Φ is a functional T of a random measure M̂ that takes into account the sampling weights
wks. Deville (1999) suggests using the Horvitz-Thompson weights wks = 1/πk or more generally,
calibration weights.
We suggest a simple method that consists in using the nonparametric weights wks provided by (6) and
defining M̂np =

∑
swksδyk

and the nonparametric substitution estimator Φ̂np = T (M̂np). The weights
wks derived in (6) to estimate the total ty can be used to estimate other finite population totals. It
can also be used to estimate any nonlinear parameter of interest Φ as soon as it can be expressed as
a functional of M.

Let uk be the linearized variables of Φ, for all k ∈ U and let ξ′ be the nonparametric model for the
linearized variable

ξ′ : uk = g(zk) + ηk

where g is supposed to be a smooth function. An estimator of g is obtained by using the same
nonparametric method employed for estimating f from the model ξ. This means that the same vectors
Gk and Ĝks from (3) and (4) are used to derive estimators of g. More precisely, let us denote ĝu,k =
G′kuU as the estimator of g(zk) under the model ξ′, where uU = (uk)k∈U and g̃u,k = Ĝ′ksus, where
us = (uk)k∈s is the sample restriction of uU . Unlike the linear case, g̃u,k is not an estimate of ĝu,k
since the sample linearized variable vector us is not known. Plugging ĝu,k (resp. g̃u,k) into (2) (resp.
(5)) yields the nonparametric difference estimator t̂u,diff (resp. the NMA estimator t̂u,np),

t̂u,diff =
∑
s

uk − ĝu,k
πk

+
∑
U

ĝu,k(7)

t̂u,np =
∑
s

uk − g̃u,k
πk

+
∑
U

g̃u,k(8)

The following theorem (Goga and Ruiz-Gazen, 2011) shows that the nonparametric estimator Φ̂np

is approximated by the nonparametric difference estimator for the population total of the linearized
variable.

Theorem 1 We suppose that the parameter Φ = T (M) has degree α, that is T (rM) = rαT (M) and
limN→∞N

−αT (M) <∞. Under general assumptions (Goga and Ruiz-Gazen, 2011), the nonparamet-
ric substitution estimator Φ̂np fulfills

N−α
(

Φ̂np − Φ
)

= N−α(t̂u,np − tu) + op(n−1/2) = N−α(t̂u,diff − tu) + op(n−1/2).

Furthermore, if the asymptotic distribution of
√
nN−α

(
t̂u,diff − tu

)
is normal with mean zero and

asymptotic variance
n

N2α

∑
U

∑
U

∆kl
uk − ĝu,k

πk

ul − ĝu,l
πl

then the asymptotic distribution of
√
nN−α

(
Φ̂np − Φ

)
is normal with mean zero and the same asymp-

totic variance.
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Variance estimation and other properties of Φ̂np are extensively discussed in Goga and Ruiz-Gazen
(2011).

4 B-spline estimation of the Gini index

Spline functions have many attractive properties, and they are often used in practice because of their
good numerical features and their easy implementation. Consider the superpopulation model ξ given
by (1) where f is a smooth function. We suppose without loss of generality that all zk have been
normalized and lie in [0, 1]. The set of spline functions of order m, m ≥ 2 with K interiors knots
0 = ξ0 < ξ1 < . . . < ξK < ξK+1 = 1 is the set of Cm−2 continuously differentiable functions on [0, 1].
Note that these functions are piecewise polynomials of degree m − 1 on the intervals between knots.
For each fixed set of knots, SK,m is a linear space of functions of dimension q = K + m. A basis for
this linear space is provided by B-spline functions B1, . . . , Bq (Dierckx, 1993).
Let BU be the N × q matrix having the vectors b′(zk) = (B1(zk), . . . , Bq(zk)), k ∈ U, as rows and
Bs the sample restriction. Let Πs be the n × n diagonal matrix with πk, k ∈ s, along the diagonal.
The design-based estimators of f are f̃y,k = Ĝ′ksys where Ĝ′ks = b′(zk)(B′sΠ

−1
s Bs)−1B′sΠ

−1
s and the

B-spline NMA estimator of ty is as follows

t̂BS,y =
∑
s

yk − f̃y,k
πk

+
∑
U

f̃y,k.(9)

The B-spline functions have the attractive property that
∑q

j=1Bj(x) = 1 for all x ∈ [0, 1]. As a
consequence (Goga, 2005), t̂BS,y is equal to the finite population total of the prediction f̃y,k, t̂BS,y =∑

swksyk where

wks =
1
πk

(∑
U

b′(zi)

)(∑
s

b(zi)b′(zi)
πi

)−1

b(zk).(10)

Consider now the complex parameter given by the Gini index,

Gini =
∑

U yk (2F (yk)− 1)
ty

=
∫

(2F (y)− 1)ydM(y)∫
ydM(y)

where F (y) =
∫

1{ξ≤y}dM(ξ)/
∫
dM(y) =

∑
U 1{yk≤y}/N is the empirical distribution function. The

nonparametric estimator for Gini is obtained by simply replacing M with M̂np. Hence,

Ĝininp =
∑

swks(2F̂np(yk)− 1)yk∑
swksyk

where F̂np(y) =

∫
1{ξ≤y}dM̂np(ξ)∫

dM̂np(y)
=

∑
swks1{yk≤y}∑

swks
with wks given by (10). The linearized variable

uk of Gini is given by

uk = 2F (yk)
yk − ȳk,<

ty
− yk

Gini + 1
ty

+
1−Gini

N

where ȳk,< denotes the mean of the yj lower than yk. We can remark from the above expression that
the linearized variable uk has a rather complicated expression. For the French Labour Force data
used in the empirical study, the linearized variable of the Gini index computed for the wage variable
exhibits a clearly nonlinear relationship versus the auxiliary variable given by the wage variable from
the year before. This is why, fitting a nonparametric model on the linearized variable uk is strongly
justified.
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The Gini index is a parameter of degree zero, so α = 0. The nonparametric estimator of the Gini
index may be approximated by

Ĝininp −Gini = t̂u,diff − tu + op(n−1/2)

where t̂u,diff is given by (7) and ĝu,k = b′(zk)(B′UBU )−1B′UuU . The variance of Ĝininp may be ap-
proximated by the variance of t̂u,diff which is equal to∑

U

∑
U

∆kl
uk − ĝu,k

πk

ul − ĝu,l
πl

.

5 Empirical results

In this section, we consider two data sets, with one study variable and one auxiliary variable. The
first data set is from the French Labour Force surveys of 1999 and 2000; it consists in the yearly
wages of 22,741 wage-earners who were sampled in both years. The second data set consists of
television audience measurements (i.e., the amount of television viewed in minutes) of 6,658 persons for
a particular channel during two consecutive Mondays in September 2010. These data are confidential
and are from the French audience measurement company Médiamétrie. Both data sets are considered
the finite populations of interest.

The employment data set is used in order to compare asymptotic variances of several estimators,
including the non-parametric estimators we propose for different complex parameters of interest. We
estimate the mean, the median, the Gini index and the poverty rate for the wages in 2000 using the
wages in 1999 as auxiliary information. The poverty rate is the proportion of persons whose wages
are below the threshold of 60% of the median wage. For each parameter (in column), the scatter plots
in Figure 1 show the relationship between the linearized variable and the auxiliary variable. For the
mean, the linearized variable is the study variable itself and it is clear from the first plot that a linear
model fits this relationship well. However, this is no longer the case for complex parameters such as
the median, the Gini index or the poverty rate.

Figure 1: Linearized variables versus the wages in 1999

We focus on a simple random sampling without replacement and consider several estimators for
each parameter such as the Horvitz-Thompson estimator, the poststratified estimator with six strata
bounded at the empirical quantiles for 1999 wages, the GREG estimator, which takes into account the
1999 wages as auxiliary information using a simple linear model, the calibrated estimator proposed
by Harms and Duchesne (2006), a multivariate GREG estimator that incorporates various auxiliary
variables, including the constant and finally, the B-spline estimators, which take into account the
wages from 1999 as auxiliary information by using a nonparametric model with K = 5 knots located
at the quantiles of the empirical distribution for wages from 1999 and for different orders m = 2, 3, 4.
During the oral presentation, the comparison results will be presented. For all parameters, results are
very stable for different B-spline orders, and almost all the results favor the B-spline estimators
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We use the second data set for simulation studies to investigate the finite-sample performance of
the proposed nonparametric estimators. Recently, the Médiamétrie company focus on the estimation
of Gini concentration measures for different television channels together with confidence intervals,
taking into account past auxiliary information. In the present study, we focus on one particular
channel. We focus on the estimation of the Gini index for the audience viewing duration on a given
Monday by taking into account the audience viewing duration of the previous Monday for the same
channel. We look at the finite-sample properties of the proposed estimators. These data are quite
challenging because they contain many zeros and ties. Simulation results concerning relative bias,
ratio of root mean squared errors and coverage probabilities will be presented during the presentation.
Again, the results are significantly better for the B-spline approach.
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