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Introduction

The modelling of the realized volatility and covariances has became a corner-stone in financial

risk management and portfolio optimization. The first brick in intraday modelling has been laid by

Andersen and Bollerslev (1998). Afterwards a series of papers providing estimators of the realized

volatility appeared and a detailed investigation has been provided. More recently the attention shifted

towards modelling the joint behavior of returns. A variety of time-series models with Gaussian in-

novations have thus been proposed. Apart of modelling volatility of returns separately, Andersen,

Bollerslev, Diebold and Labys (1999) introduce the notion of realized correlation and realized covari-

ance which helps to model high dimensional high frequency joint behaviour. Recent works dedicated to

modelling the realized covariance/correlation matrix are by Hayashi and Yoshida (2005) and Audrino

and Corsi (2009). Most crucial point in these papers, the residuals are assumed to be normal and

the dependency is that of a normal structure. The Gaussian structure leads to imprecise modelling

of the joint tails of the distribution as it has no upper nor lower tail dependency. Recent evidence

shows, that a series of financial data are not following normal dependency, Lee and Long (2009). For

static, non time dependent models a normal distribution can be replaced by the copula function, see

Sklar (1959), Nelsen (2006), etc. Modelling with time varying copulae based innovations is increasing

in popularity, see Patton (2004), Chen ad Fan (2006), Härdle, Giacomini, Spokoiny (2009), Härdle,

Okhrin, Okhrin (2011), etc. To the authors’ knowledge the only paper that is using intraday data to

model the dependency is Breymann, Dias and Embrechts (2003). In this paper we propose a novel

approach of time varying copulae using intraday data. Current work discusses different models of

realized covariances and appropriate realized variances. The quality of this approach is compared by

the out of sample forecast using an adaptive estimation of the copula model, and the simple rolling

window applied to the residuals from some simple time varying model.

The paper is organized as follows. First we provide a discussion on different methods of estima-

tion of the realized volatility and covariances. The second section deals with copula theory, mainly

with the recent time varying models. The Section 3 states the main result of our model. A simulation

study and an empirical part follows.

Realized volatility and correlation
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In the paper we consider a d-dimensional process of log-prices P = (P1, . . . , Pd)
> observed on

the interval [0;T ], where T is considered to be an integer number measured in days. The observation

times for the asset j at day t are denoted by tj,t,1, tj,t,2, . . . and are assumed to be strictly increasing,

from which follows that our observations are given by Pj,t,i = Pj,tj,t,i , j = 1, . . . , d, i = 1, . . . , Nj , t =

1, . . . , T . The observation points differ for all processes which leads to a different number of obser-

vations. The observed log-price process P is assumed to be driven by the efficient price process Y ,

which in our setup is a Brownian semimartingale with a jump component (BSMJ)

dYt = µtdt+ σtdWt + dJt

with µt being vector of predictable drifts, and σt cadlag volatility matrix process, and Wt is a vector

of independent Brownian motions. The market microstructure effect is modeled through an additive

component: Pj,t,i = Yj,t,i + Uj,t,i, with E(Uj,t,i) = 0,
∑

h |hΩh| <∞, where Ωj,h = Cov(Uj,t,i, Uj,t,i−h).

Later on we will estimate the quadratic variation of Y , i.e. [Y ] =
∫ 1
0 Σudu, with Σ = σσ>.

For the estimation of [Y ] from discrete, non-synchronous and noisy price observations, we will

use the realized kernel method introduced by Barndorff-Nielsen, Hansen, Lunde, Shephard (BNHLS)

(2008) and is considered to be consistent positive semi-definite estimators of the covariation of equity

prices with noise and non-synchronous trading. The multivariate realized kernel is defined as

K(P ) =
H∑

h=−H
k

(
|h|

H + 1

)
Γh,

with Γh being a matrix of autocovariances given by

Γh =

{ ∑n
j=|h|+1 pjp

>
j−h, h ≥ 0∑n

j=|h|+1 pj−hp
>
j , h < 0

,

and k(x) being the weight function of the Parzen kernel. For a discussion on the bandwidth selection

we refer to the web appendix of BNHLS (2008).

Time Varying Copula

The advantage of the copula is that it allows to split the multivariate distribution into the

margins and a pure dependency component it captures the dependency between variables eliminating

the impact of the marginal distributions. Formally copulae where introduced in Sklar (1959). The

main result states that if F is an arbitrary d-dimensional continuous distribution function of the

random variables X1, . . . , Xd, then the associated copula is unique and defined as the continuous

function C : [0, 1]d → [0, 1] which satisfies the equality

C(u1, . . . , ud) = F{F−11 (u1), . . . , F
−1
d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−11 (·), . . . , F−1d (·) are the quantile functions of the corresponding marginal distributions. One

of the classes that overcomes the drawback of elliptical copulae of having no explicit form of the cdf

is the class of Archimedean copulae

(1) C(u1, . . . , uk) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1],

where φ ∈ L = {φ : [0;∞) → [0, 1] |φ(0) = 1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . ,∞}. The function

φ is called the generator of the copula and commonly depends on a single parameter θ. A detailed

review of the properties of Archimedean copulae can be found in McNeil and Neslehova (2008).
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In this paper we consider a classical rolling window approach (with the window width w) and

the approach based on a local constant copula approximation. Corresponding theory and applications

may be found in Giacomini, Härdle, Spokoiny (2009) and Cizek, Härdle, Spokoiny (2009).

Let θt denote the time varying but unknown copula parameter. The idea is to select for each time

point t0 an interval I at which θt can be well approximated by a constant θ∗. The discrepancy between

two copulae C(·; θ) and C(·; θ′) is measured by the Kullback-Leibler divergence K{C(·; θ′), C(·; θ)} =

E θ′ log c(·;θ′)
c(·;θ) , where c is the copula density. The aim is to select I as close as possible to the so-called

“oracle” choice interval Ik∗ , defined as the largest interval I = [t0 − mk∗ ; t0], for which the small

modelling bias condition (SMB) is fulfilled, i.e. 4I(θ) =
∑

t∈I K{C(·; θt), C(·; θ)} ≤ 4, for some

4 ≥ 0, θ. The LCP is based on sequentially testing the hypotheses of homogeneity on intervals Ik.

We select Ik with k = −1, 0, 1, . . . as the sequence of intervals Ik ⊂ Ik+1, starting with k = 1. If there

are no change points in Tk ⊂ Ik \ Ik−1 we accept Ik as an interval with constant copula parameter

and structure. At the next step we take Tk+1 and test it for homogeneity. We repeat the steps until

rejection or the largest possible interval IK is accepted, leading to an interval Ik̂.

Realized Copula

From the Hoeffdings lemma it is known that the covariance σij for random variables Xi and

Xj with marginal distributions Fi and Fj , with finite first and second moments and the copula Cθ is

given by:

σij(θ) =

∫ ∞
−∞

∫ ∞
−∞

Cθ{Fi(xi), Fj(xj)} − Fi(xi)Fj(xj)dxidxj

Following theory of the intraday data we suppose the daily returns rt ∼ N(0; ˆIV )

Usually this integral has no explicit form, except as for the normal distribution, where one gets

σ = θ. For d = 2 one has to invert σi,j(θ) to get the estimator of the copula parameter θi,j = σ−1i,j (θ).

This can be problematic, when one deals with a high dimensional problem, simple Archimedean copulae

depend only on the one parameter, thus, there should be a method, allowing some approximation of

the copula parameter. Let us first define the function which measures losses from the estimator of

the volatility, without any model assumption (in the copula sense) and based on the copula: gi,j(θ) =

σi,j − σi,j(θ). Here we propose several estimators of the copula parameter based on the realized

covariance

1. An average of the all possible copula parameters based on the pairs

θ̂av =
2

d(d− 1)

∑
i≤j

θ̂i,j

2. For the second method we propose one-stage method of moments estimator with the identity

weight matrix W = Id×d. By denoting g(θ) = {gi,j(θ)}>i≤j the estimator is given by

(2) θGMMI = arg min
θ

g>(θ)g(θ)

This method is equivalent to the first one in the two dimensional case.

3. The two-stage GMM estimator with W = {E[g(θGMMI)g
>(θGMMI)]}−1, given by

(3) θ̂GMM = arg min
θ

g>(θ)Wg(θ)
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HL HLgmm LinCor

mean R.mse mean R.mse mean R.mse

ξ = 0, λ = (30, 45, 60)

RC390 1.349 0.651 1.340 0.662 1.356 0.645

RC26 1.929 0.300 1.980 0.364 1.938 0.286

K 1.843 0.199 1.856 0.214 1.836 0.201

ξ = 0.001, λ = (30, 45, 60)

RC390 1.176 0.824 1.170 0.830 1.183 0.817

RC26 1.842 0.320 1.907 0.382 1.857 0.306

K 1.667 0.348 1.706 0.321 1.668 0.346

Table 1: Simulation results for the 3-dimensional realized copula using the factor SV model with

nonsynchronous observations and measurements noise. Bias and root mean square error are reported.

4. An estimator based on the transformation of the linear correlation coefficient of the normal

distribution to the Kendall’s τ , and the consequent transformation of the Kendall’s τ to the

copula parameter. Same as for the first method, this works in two dimensions. For d > 2 we

average all bivariate estimates

τGauss,i,j = 2 arcsin(σi,j)/π, θ̂Gumbel,i,j =
1

1− τ̂
, θ̂K =

2

d(d− 1)

∑
i≤j

θ̂Gumbel,i,j

Empirical findings show, that this is almost equivalent to the first method.

Simulation Study

In this simulation study we considered almost the same model as in BNHLS(2011) with the only

one difference of the copula based dependence:

X = Y + U, dY = µdt+ σdWc

σ(i) = exp{β0 + β1%
(i)} with d%(i) = α%(i)dt+ dB(i) and %(i)(0) = N(0, (−2α)−1)

Uj |σ, Y ∼ N(0, ω) with ω2 = ξ2

√√√√N−1
N∑
j=1

σ(i)4(j/N)

(µ, β0, β1, α, %, θ, ξ
2) = (0.03,−5/16, 1/8,−1/40,−0.3, 2.0, {0, 0.001})

where dWc is the copula dependent vector of Brownian motions, what means, that increments are

copula dependent with parameter θ. U is an additive noise, and ξ2 is the signal-to-noise ratio. For

the simulation we apply Euler scheme with the sample size N = 23400 which corresponds to trading

every second in 6.5 hours. To introduce nonsynchronous trading we implement d independent Poisson

processes with intensity λ, for d = 2 we use λ = (30, 45, 60). Bias and root mean square error for all

models in two and three dimensional case are provided in the Table 1.

Empirical Study

The empirical part of this work is based on data taken from NYSE’s Trades and Quotes (TAQ)

database, for Citigroup (C), IBM and Alcoa (AA) for the period from 01.01.2007 till 31.07.2009 which
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Figure 1: Estimation of the copula parameter based on all methods discussed above.

covers the very turbulent periods of the financial crisis in the mid of 2008. This period covers 638

days in total and daily transactions from 9:30 till 16:00. We apply the cleaning procedure proposed

by BNHLS (2008).

Let us denote by w the portfolio, which is represented by the number of assets for a specified

stock, w = {w1, . . . , wd}, wi ∈ Z. The value Vt of the portfolio w is given non-recursively by Vt =∑d
j=1wjSj,t and the profit and loss function by Lt+1 =

∑d
j=1wjSj,t {exp(Xj,t+1)− 1}. For every model

we simulate returns assuming no autocorrelation, by taking the respective dependency parameter

(realized copula, copula from LCP or rolling window) and appropriate volatility. If we take the rolling

window or LCP method, volatility is just the variance of the returns taken from the respective interval.

For the realized copula volatility is a realized volatility. The distribution function of L, dropping the

time index, is given by FL(x) = P (L ≤ x). As usual the VaR at level α from a portfolio w is defined

as the α-quantile from FL i.e. VaR(α) = F−1L (α). FL depends on the d-dimensional distribution

of log-returns FX . Thus, modelling their distribution is essential to obtain the quantiles from FL.

Afterwards backtesting is used to evaluate the performance of the specified copula family C. The

estimated values for the VaR are compared with the true realisations {lt} of the P&L function, an

exceedance occuring for each lt smaller than V̂ aRt(α). The ratio of the number of exceedances to the

number of observations gives the exceedances ratio α̂: α̂ = 1
T−r

∑T
t=r I{lt < V̂ aRt(α)}.
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