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In this endeavour, we consider two types of process :long memory and nonlinearity. In long
memory processes, we can observe some features such as seasonality and time-varying dependence.
Thus a kind of nonstationarity is existing. To take into account this type of phenomena, we use
generalized long memory processes, the Gegenbauer processes. In the nonlinear part, we propose
the STAR model introduced by Teräsvirta in 1994. We’ll give the definitions of both models and
their main properties before studying the new formed model,the GI-STAR.

1 The Gegenbauer processes (GI)

The gegenbauer processes are introduced in [Hosking,1981], where there are only evoked. In our
model, we give the Gegenbauer processe under its canonical form :

(1− 2νL+ L2)δyt = xt

Conditions of stationarity and inversibility
Theorem 1 :[Gray and al,1989]
Let a Gegenbauer process with parameter ν and δ. Then
-if |ν| < 1, the process is inversible if δ > −1/2 and stationary if δ < 1/2
-if |ν| = 1, the process is inversible if δ > −1/4 and stationary if δ < 1/4

In the definition of Gegenbauer processes, we meet the Gegenbauer polynomials whose there
come from and are thus defined :
Let |L| ≥ 1 and δ ∈ R. We define thus for all |ν| ≥ 1 the Gegenbauer polynomials Ck(δ, ν) by :

(1− 2νL+ L2)−δ =
∑
k≥0

Ck(δ, ν)Lk

We show that coefficients of development can be writen as follows :

Ck(δ, ν) =
[k/2]∑
j=0

(−1)jΓ(δ + k − j)(2ν)k−2j

Γ(δ)j!(k − 2j)!

where Γ(.) representes Gamma’s function. We can easily calculate these coefficients recursively
by noting that : 

C0(δ, ν) = 1
C1(δ, ν) = 2δν
Cj(δ, ν) = 2ν( δ−1

j + 1)Cj−1(δ, ν)− (2 δ−1
j + 1)Cj−2(δ, ν)

2 Definition of STAR model

To capture the nonlinear feature of time series, a variety of models can be used (see, Franses
& van Dijk, 2000), but the most popular model is the STAR. This model has been empirically
developed by Teras̈virta (1994). Generally, the model STAR (p) with two regimes can be written
as :
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xt = (φ1,0 + φ1,1yt−1 + ....+ φt−pyt−p)(1−G(st; γ, c))

+(φ2,0 + φ2,1yt−1 + ....+ φt−pyt−p)G(st; γ, c) + εt t = 1...T

with εt a gaussian white noise ; G(st; γ, c) the transition function governing the movement from
one regime to another and st is a variable of the transition function. Usually, it is assumed to be
the logistic function :

G(st; γ, c) = (1 + exp− γ(st − c))−1, γ > 0

According to Taylor, Peel & Sarno (2001), the transition variable the most sensible is the de-
pendent variable that is lagged one period ; the argument γ, which determines the degree of curvature
of the transition function, and the argument c, which is the threshold parameter.

3 Definition of GI-STAR model

The GI-STAR model is a combinaison of Gegenbauer processes (GI) and nonlinear processes
represented by STAR model :{

(1− 2νL+ L2)δyt = xt
xt = φ

′
1wt(1−G(st; γ, c)) + φ

′
2wtG(st; γ, c) + εt

with
φi = (φi,0, φi,1, ......, φi,p)

′
i = 1, 2

wt = (1, xt−1, ...., xt−p)

⇒ (1− 2νL+ L2)δyt = φ
′
1wt(1−G(st; γ, c)) + φ

′
2wtG(st; γ, c) + εt

Before translate the lagged operator (1 − 2νL + L2)δ, we must study the conditions of inversi-
bility and stationarity.

Conditions of stationarity and inversibility :

Invertibility conditions are easiest to determine. They are the same as for the process gegenbauer.
If they are different, inversibility of the gegenbuaer process would not hold. Gegenbauer process is
inversible following these conditions :
-if |ν| < 1, the process is inversible if δ > −1/2
-if |ν| = 1, the process is inversible if δ > −1/4

For stationarity’s conditions, we have two points :
-First, we must take into account the stationarity’s conditions of the GI’s part being done under
some values of paramaters ν et δ evoked above following inversibility of this process.
-if |ν| < 1, the process is stationary if δ < 1/2
-if |ν| = 1, the process is stationary if δ < 1/4
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It should be taken into account in this study on pain of draw wrong conclusions.
-Second, in the STAR model part, we assume that the process is stationary.

Thus, assumptions of stationarity and inversibility are :
-(H0) :φi = φi,0 − φi,1L − ...... − φi,pLp i = 1, 2, is a polynomial having all its roots outside the
unit circle.
-(H1) :|δ| < 1/2 if |ν| < 1 or |δ| < 1/4 if |ν| = 1

Considering these conditions, we obtain the infinite-order writing of model :

yt = (φ1,0 +
∞∑
j=1

C1,jyt−j)(1−G(st; γ, c)) + (φ2,0 +
∞∑
j=1

C2,jyt−j)G(st; γ, c) + εt

where

Ci(L) = φi(1− 2νL+ L2)δ, i = 1, 2

with

Ci(L) = 1 + Ci,1L+ Ci,2L
2 + ...

4 Estimation for GI-STAR model

In this section, we present the method for estimating parameters. We have :

xt =
∞∑
j=0

Cjyt−j

⇒
∞∑
j=0

Cjyt−j = φ
′
1wt(1−G(st; γ, c)) + φ

′
2wtG(st; γ, c) + εt

⇒ εt =
∞∑
j=0

Cjyt−j − φ
′
1wt(1−G(st; γ, c))− φ

′
2wtG(st; γ, c)

We estimate the parameters of the model GISTAR defined by :
Ψ = (δ, φ1,0, φ1,1, ....., φ1,p, φ2,0, φ2,1, ......., φ2,p). Let Ψ0, the true value of the Ψ parameter and
assume that it is inside Θ, where Θ is a compact of R2p+1.
we will use the method of conditional least squares CSS. This method is based on maximizing the
sum of the conditional least squares :

max
Ψ

∞∑
t

ε2t

We present in detail the method for estimating parameters of the GISTAR model when the noise
(εt)t∈Z follows a Gaussian conditional distribution. The distribution of (εt)t∈Z conditionally to the
generated tribe by the past of (Yt)t∈Z, noted Ft−1, is a distribution N (0, 1).
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The Ψ estimator of conditional least squares CSS we will study in this part, noted Ψ̂ in space Θ, is
obtained by maximizing the conditional log likelihood of (εt)t∈Z on its σ-algebra F0. This likelihood
is written in our case :

L(Ψ) =
1
n

n∑
t=1

lt with lt = −ε2t

For obtain Ψ, we calculate the first derivatives of this likelihood and the information matrix asso-
ciated. For all t, the first derivatives with respect to Ψ are given by :

∂lt
∂Ψ

= −2εt
∂εt
∂Ψ

This leads us to specify the derivates of εt :

∂εt
∂φ1

=
∞∑
j=0

yt−j
∂C1,j

∂φ1
+ wt(1−G(st; γ, c))

∂φ
′
1

∂φ1

∂εt
∂φ2

=
∞∑
j=0

yt−j
∂C2,j

∂φ2
+ wtG(st; γ, c))

∂φ
′
2

∂φ2

∂εt
∂δ

= log(1− 2νL+ L2)xt

To calculate the Fisher information matrix we show in completing this article it is well defined for
this model, we calculate the derivative of order two following :

∂2lt
∂Ψ∂Ψ′ = −2εt

∂2εt
∂Ψ∂Ψ′

The CSS estimator can then be calculated by maximizing the likelihood L(Ψ).
Many other studies are underway for the enrichment of this article with a simulation that is being
programmed, the existence and consistency of the estimator Ψ̂ of CSS where many assumptions
must be checked.
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