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Introduction

We are concerned in this paper with the statistical estimation of the gap of decomposability of the
class of the statistical poverty indices in general by significant confidence intervals. we would be able
to handle seperated analyses in the subgroups and report the global case. Suppose that we have some
statistic of the functional form Jn = J(Y1...Yn) where E ={Y1, ..., Yn} is a random sample of the random
variable Y defined on a probability space (Ω,A, P) and drawn from some specific population. Now
suppose that this population is devided into K subgroups S1...SK and let us, for each i ∈ {1, ...,K},
denote the subset of the random sample {Y1..., Yn} coming from Si by Ei = {Y1,i, ..., Yni,i} and then
put Jni(i) = J(Y1,i, ..., Yni,i). The statistic Jn is said to be decomposable only whenever one always
has

Jn =
1
n

K∑
i=1

niJni(i).

Since this property is very partical in welfare analyses, practitioner usually prefer decomposable indices
such as the Foster-Greer-Thorbeck (FGT) [9] family and the Chakravarty family [7] however, the
weighted measures, which are not decomposable, have very interesting properties in poverty analysis.
Dismissing them only for non-decomposability would result in a disaster.

A brief reminder on Poverty measures

We consider a population of individuals or households, each of which having a random income or
expenditure Y with distribution function G(y) = P(Y ≤ y). In the sequel, we use Y as an income
variable while it might be any positive random variable. An individual is classified as poor whenever
his income or expenditure Y fulfills Y < Z, where Z is a specified threshold level.
Consider now a random sample Y1, Y2, ...Yn of size n of incomes, with empirical distribution func-
tion Gn(y) = n−1# {Yi ≤ y : 1 ≤ i ≤ n}. The sample is then equal to Qn = nGn(Z). Given these
preliminaries, we introduce measurable functions A(p, q, z), w(t), and d(t) of p, q ∈ N, and z, t ∈ R.
Set

B(Qn) =
Qn∑
i=1

w(i).

Let now Y1,n ≤ Y2,n ≤ ... ≤ Yn,n be the order statistics of the sample Y1, Y2, ...Yn of Y . We consider
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general poverty indices (GPI) of the form

Jn = GPIn =
A(Qn, n, , Z)

nB(Qn)

Qn∑
j=1

w(µ1n + µ2Qn − µ3j + µ4)d
(

Z − Yj,n

Z

)
,

where µ1, µ2, µ3, µ4 are constants. This global form of poverty indices was introduced in [1] (see also
[2], [1] and [3]) as an attempt to unify the large number of poverty indices that have been introduced
in the literature since the pioneering work of the Nobel Prize winner, Amartya Sen(1976) who first
derived poverty measures (see [5]) from an axiomatic point of view. A survey of these indices is to be
found in Zheng [8].

Statistical decomposability

From now on, we suppose in our study, that population of households is divided into K subgroups
such that, for each i ∈ {1, ...,K} that the probability that a randomly drawn household comes from
the ith subgroup is pi > 0, with p1 + ... + pK = 1. Let us suppose that we draw a sample of size n
from the population : Y1, ..., Yn and let us denote those of the n∗i observations coming from the ith

subgroup, (1 ≤ i ≤ K) by Yi,j , j = 1, ..., n∗i . Let Jn∗i
(Gi) = Jn∗i

(Yi,1, ..., Yi,n∗i
) the empirical index

measured on the ith subgroup and Jn(G) the global index. Clearly, decomposability implies for all
n ≥ 1,

gdn = Jn −
1
n

K∑
i=1

n∗i Jn∗i
≡ 0.

Surely, n∗ = (n∗1, ...n
∗
K) follows a multimonial law with parameters n and p = (p1, ..., pK). Since each

pi > 0, we surely have that each n∗i → ∞ a.s., as n → ∞. We will have by (a) and by exact poverty
index ([2]),

gdn = Jn(G)− 1
n

K∑
i=1

n∗i Jn∗i
(Gi) →P gd = J(G)−

K∑
i=1

piJi(Gi).

So we have the exact gap of decomposability gd. It follows that gd is zero if the distribution of
the income is the same over all the population, that the more homogeneous the income is over the
population, the lower the gap of decomposability gd is. Now we want to find the law of

gd∗n =
√

n(gdn − gd)

for a more accurate estimation of gd by confidence intervals. At this step, we have to precise our
random scheme. We put a probability space (Ω1 × Ω2,A1 ⊗ A2, P1 ⊗ P2) and put P = P1 ⊗ P2. We
draw the observations in the following way. In each trial, we draw a subgroup, the ith subgroup
having the occuring probability pi. And we put. We conclude that {Y1, ..., Yn} is an independant
sample drawn from G(y) we can prouve that

G(y) =
K∑

i=1

piGi(y),

the mixture of the distribution functions of the subgroups incomes. We readily see that conditionnally
on n∗ ≡ (n∗1, n

∗
2, ..., n

∗
K) = (n1, n2, ..., nK) ≡ n with n1 + n2 + ... + nK = n, {Yi,j , 1 ≤ j ≤ n∗i } are

independant r.v.’s with d.f. Gi.

Our results
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The results stated here hold for a very large class of poverty measures summerized in the GPI. This is
why we need the representation Theorem of the GPI in [4]. In fact we do not need here the complete
form of [4], but a special case of it, based on the assumptions described below. For that, suppose that
Gi (1 ≤ i ≤ K), the distribution function of the income for the ith subgroup, and G the distribution
function of the income for the global population. Let also

γ(x) = d(
Z − x

Z
)1(x≤Z)

and

e(x) = 1(x≤Z).

The following assumptions are required. (HD0) G0(Z) ∈]0, 1[ for G0 ∈ {G, G1, ..., GK}. (HD1) There
exists a function h(p, q) of (p, q) ∈ N2 and a function c(s, t) of (s, t) ∈ (0, 1)2 such that, as n → +∞,

max
1≤j≤Q

∣∣A(n, Q)h−1(n, Q)w(µ1n + µ2Q− µ3j + µ4)− c(Q/n, j/n)
∣∣ = oP (n−1/2).

(HD2) There exists a function π(s, t) of (s, t) ∈ R2 such that
as n → +∞,

max
1≤j≤Q

∣∣∣∣w(j)h−1(n, Q)− 1
n

π(Q/n, j/n)
∣∣∣∣ = oP (n−1/2).

(HD3) The bivariate functions c and π have continuous partial differentials. (HD4) For a fixed x,
the functions y → ∂c

∂y (x, y) and y → ∂π
∂y (x, y) are monotone. (HD5) G0 is strictly increasing for any

G0 ∈ {G, G1, ..., GK}. (HD6) We have for any G0 ∈ {G, G1, ..., GK},

0 < Hc(G0) =
∫

c(G0(Z), G0(y))γ(y)dG0(y) < +∞,

0 < Hπ(G0) =
∫

π(G0(Z), G0(y))e(y)dG0(y) < +∞,

J(G0) = Hc(G0)/Hπ(G0),

g0 = H−1
π (G0)gc −Hc(G0)H−2

π (G0)gπ + K(G0)e(·),

with

gc(·) = c(G0(Z), G0(·))γ(·),

gπ = π(G0(Z), G0(·))e(·),

K(G0) = H−1
π (G0)Kc(G0)−Hc(G0)H−2

π (G0)Kπ(G0),

with

Kc(G0) =
∫ 1

0

∂c

∂x
(G0(Z), s)γ(G−1

0 (s))ds,

Kπ(G0) =
∫ 1

0

∂π

∂x
(G0(Z), s)e(G−1

0 (s))ds,
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and

ν0 = H−1
π (G0)νc,0 −Hc(G0)H−2

π (G0)νπ,0,

where

νc,0(y) =
∂c

∂y
(G0(Z), G0(y))γ(y),

νπ,0(y) =
∂π

∂y
(G0(Z), G0(y))e(y).

We now put,

li = (g − gi)G−1
i ,

ci(t) = (piν − νi)G−1(t),

and let

A1 =
K∑

i=1

piEG2
(
i, (g − gi)G−1

i

)
,

A2 =
K∑

i=1

∫ 1

0

∫ 1

0
(s ∧ t− st)ci(t)ci(s)dsdt,

A3 =
K∑

i=1

K∑
h6=i

p2
h

∫ 1

0

∫ 1

0

[
Gh(G−1

i (s)) ∧Gh(G−1
i (t))−Gh(G−1

i (s))Gh(G−1
i (t))

]
×

ν(G−1
i (s))ν(G−1

i (t))dtds +
K∑

i6=j

pipj

K∑
h/∈{i,j}

ph

∫ 1

0

∫ 1

0

[
Gh(G−1

i (s)))∧Gh(G−1
j (t)))−Gh(G−1

i (s)))Gh(G−1
j (t)))

]
×

ν(G−1
i (s))ν(G−1

j (t))dtds,

B1 =
∑

pK
i

∫ 1

0

{∫ G−1
i (s)

−∞
(g − gi)(y)dGi(y)− sE(g − gi)(Y i)

}
ci(s)ds,

B2 =
K∑

i6=j

pipj

∫ 1

0

∫ 1

0
[s ∨Gi(G−1

j (t))− sGi(G−1
j (t))]ci(s)ν(G−1

j (t)dsdt,

B3 =
K∑

i6=j

pipj

∫ 1

0

{∫ G−1
j (s)

−∞
(g − gi)(y)dGi(y)−Gi(G−1

j (s))× E(g − gi)(Y i)

}
× ν(G−1

j (s))ds.

Theorem : Let (HD0)-(HD6) hold. Then

gd∗n,0 =
√

n(gdn − gd0) N (0, ϑ2
1 + ϑ2

3),

and

gd∗n =
√

n(gdn − gd) N (0, ϑ2
1 + ϑ2

2),
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with

ϑ2
1 = A1 + A2 + A3 + 2(B1 + B2 + B3),

and

ϑ2
2 =

K∑
h=1

Fh
2ph −

(
K∑

h=1

Fhph

)2

,

for

Fh = Jh(Gh)/
√

ph + Eg(Y h) +
K∑

i=1

piEGh(Y i)ν(Y i),

and

ϑ2
3 =

K∑
h=1

Mh
2ph −

(
K∑

h=1

Mhph

)2

,

for

Mh = Eg(Y h) +
K∑

i=1

piEGh(Y i)ν(Y i).

The Sen Case

The conditions (HD1), (HD2), (HD3) and (HD4) hold for this measure and we have here c(x, y) = x−y

and π(x, y) = y/x. Further when (HD0), (HD5) and (HD6) are true, the results of Theorem apply
with

J(G0) = 2
∫ G0(Z)

0

(
1− s

G0(Z)

)(
Z −G−1

0 (s)
Z

)
ds,

K(G0) = 2

(
1− 1

ZG0(Z)

∫ G0(Z)

0
G−1

0 (s)ds

)
+

J(G0)
G0(Z)

,

g0(y) = 2
{[(

1− G0(y)
G0(Z)

)(
Z − y

Z

)
− 2

(
G0(y)
G0(Z)

)(
J(G0)
G0(Z)

)]
+ K(G0)

}
1(y≤Z),

and

ν0(y) =
[
− 2

G0(Z)

(
Z − y

Z

)
− 4

J(G0)
G0(Z)2

]
1(y≤Z).

Datadriven applications

In this note, we particularize our results to the Sen [5] as a example. The same can be done for the
Shorrocks measure [10] or the kakwani family [6] of indices. We consider the Senegalese database
ESAM 1 of 1996 which includes 3278 households. We first consider the geographical decomposition
into the areas Kolda (ko), Dakar (Capital of Sénégal, dak), Ziguinchor (zi), Diourbel (di), Saint-Louis
(stl), Tamba (ta), Kaolack (ka), Thiès (th), Louga (lg), Fatick (fa) :

o
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(Area) Senegal ko dakar zi di stl ta ka th lg fa
(Sen)% 34.71 51.66 22.73 39.13 40.16 37.51 47.47 37.91 41.31 34.53 42.22
(Size) 3278 198 1122 216 231 314 126 316 401 174 180

Computing ϑ2
1, ϑ2

2 and ϑ2
3 with the estimations p ≈ ni/n, gives ϑ2

1 + ϑ2
2 = 0.093195, ϑ2

1 + ϑ2
3 =

0.093224 and gdn = 1.25450 10−3 . This gives the 95%-confidence J(G) ∈ [34.7%, 34.71%], dg ∈
[−0.00919, 0.00117],

Secondly we consider the decomposition by the Household Chief gender :

Gender Sénégal Male female
Sen Index 34.7 % 35.27 % 32.62 %
size 3278 2559 919

Computing ϑ2 with the estimations p ≈ ni/n, gives ϑ2
1 + ϑ2

2 = 1.87, ϑ2
1 + ϑ2

3 = 1.78, and gdn =
1.496×10−4 . This gives the 95%-confidence :dg ∈ [−0.00437, 0.0016],that J(G) ∈ [34.696%, 34.704%],
We get the same conclusion, that is the gap of decomposaiblity is been significanly very low. The sen
measure is then pratically decomposable.

Conclusion

We just illustrated how apply our results for the Sen measure and the Senegalase database ESAM I.
But It would be more interesting and instructive to conduct large scale datadriven studies for the West
African databases for example, for several measures. It would also be interesting to see the influence
of the Kakwani parameter k on the results. Theses studies are underway.
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