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Introduction

Observations of mixtures of different subpopulations are common in biological and sociological

studies. For such purposes we consider the case, when the observations are taken from a set of groups

containing subjects, which belong to different subpopulations. Proportion of each subpopulation in a

group is known and can vary from group to group. Our aim is to estimate the means of an observed

variable for subjects, which belong to each subpopulation.

Such problems arise in analysis of data of sociological surveys concerning so called “sensitive

questions”, e.g. problems of drugs usage, school tests cheating and so on. Anonymous survey is usually

used to avoid inadequate answers on the questions. answers on such questions. On the other hand,

it is interesting to compare the obtained anonymous information on the proportion, say of cheaters

in different groups of anonymous respondents to open information on their individual features, such

as age, school marks, gender, etc. In this example one considers two subpopulations of cheaters and

non-cheaters and estimate mean characteristics over these subpopulations.

Another example is an analysis of genetic and phenotype information in genomic imprinting

studies.

For such purpose we consider some nonparametric estimates of the subpopulation means, such

as weighted means with minimax and adaptive weights. Finite sample properties and asymptotic

behaviour of these estimates are discussed. They are compared to maximum likelihood estimates for

some parametric submodel.

Model description

To analyse such data finite mixture model (FMM) will be used. In classical FMM one observes

a set of independent random vectors (variables) X1, . . . , XK and the distribution of Xi is a mixture

of L different probabilistic distributions:

(1) P{Zj ∈ A} = p1H1(A) + p2H2(A) + · · ·+ pLHL(A),

where Hl, l = 1, . . . , L is the distribution of observed variables for the units from the l-th component of

the mixture, pl is the probability to observe a unit from the l-th component (the mixing probability, the

concentration of the l-th component in the mixture), A is any measurable subset of the observations

space. In this model all concentrations are constant. Analysis of of FMMs was started by Newcomb [4]
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and Pearson [5]. For recent results see McLachan and Pell [3].

Finite mixtures with varying concentrations were considered by Maiboroda, Sugakova and oth-

ers [1, 2, 6] for independent observations.

In this paper we consider a case of dependent observations. Dependency arises due to a sampling

scheme with replacement. We consider two classes of subjects, which are distributed over K groups,

so that i–th group contains N1
i subjects of first class and N2

i subjects of second class. Total number

of subjects in i–th group we will denote by Ni. We will treat group sizes as nonrandom known values.

Now, a random subject from group i will belong to class l with probability

wl
i =

N l
i

Ni
.

These probabilities will be called concentrations.

Let us denote by X some numeric characteristic of interest associated to each subject. We

assume that values of X are generated by some stochastic mechanism independently for all subjects

in the considered population. The distribution of X for subjects from one class is the same, but it is

different in different classes (subpopulations).

In this paper we consider only the mean value estimation of X for subjects from both classes.

Denote the mean value and variance of characteristic X for subjects from the class l by µl and σl
respectively.

The observed sample contains values of X for ni subjects selected from the i–th group (i =

1, . . . ,K) by simple random sampling without replacement. Denote the value of characteristic X of

the j–th subject from the i-th group in the sample by Xij .

We will consider different estimators for mean value of characteristic X for both classes.

Linear estimate

Let us consider the following estimate for mean value of class l:

µ̂(al) =
1

K

K∑
i=1

aliTi,

where Ti is mean value of characteristics in group i:

Ti =
1

ni

Ni∑
j=1

Xij ,

and al = (al1, . . . , a
l
K) is some set of coefficients. Without lose of generality further we will consider

estimation only for the first class and omit index 1 at a1.

It can be shown, that the estimate for the first class µ̂1(a) is unbiased under the following

conditions:

(2)
1

K

K∑
i=1

w1
i ai = 1,

1

K

K∑
i=1

w2
i ai = 0.

Such coefficients exist in case of not all concentrations are equal. To select the best set of

coefficients we are to minimize the variance of µ̂1(a):

D µ̂1(a) =
1

K2

K∑
i=1

a2i
ni

(
w1
i σ

2
1 + w2

i σ
2
2 +

Ni − ni
Ni − 1

w2
iw

1
i (µ1 − µ2)2

)
,
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It depends on unknown population parameters, namely means and variances for both classes. In such

case we can use minimax coefficients, introduced in Maiboroda [2]:

āi,K =
(1− r̄1,K)w1

i + r̄2,K − r̄1,K
r̄2,K − r̄21,K

, i = 1, . . . ,K.

where r̄j,K — moments of concentrations w1
i :

r̄j,K =
1

K

K∑
i=1

(w1
i )j , j = 1, 2.

They fulfil conditions (2) and minimize the sum of squares
∑K

i=1 a
2
i . Although minimax coeffi-

cients do not minimize the variance of µ̂1(a), they are not too bad. The following theorem establishes

conditions of consistency and asymptotic normality of estimates with minimax coefficients.

Theorem 1 Let there exist C > 0,M ≥ 1, such that r̄2,K − r̄21,K > C for all K and ni ≤ M for all

i ≥ 1. Then the estimate µ̄1,K = µ̂(āK) is consistent and distributions of

1√
D µ̄1,K

(µ̄1,K − µ1)

converge weakly to the standard normal distribution as K →∞.

To obtain the best coefficients ai which minimize the variance of the estimate, rewrite expression

for variance in the following form:

D µ̂1(a) =
1

K2

K∑
i=1

a2i di,

di =
1

ni

(
w1
i σ

2
1 + w2

i σ
2
2 +

Ni − ni
Ni − 1

w2
iw

1
i (µ1 − µ2)2

)
, i = 1, . . . ,K.

Considering conditions (2), the best coefficients can be found by following formula:

ãi,K =
(r̃0,K − r̃1,K)w1

i + r̃2,K − r̃1,K
di(r̃2,K r̃0,K − r̃21,K)

, i = 1, . . . ,K,

where r̃j,K are weighted moments of concentrations wi:

r̃j,K =
1

K

K∑
i=1

(w1
i )j

di
, j = 0, 1, 2.

More detailed analysis of such estimates and proofs of theorems can be found at Shcherbina [7].

Theorem 2 In case of all conditions of Theorem 1 are fulfilled, the estimate µ̃1,K is consistent and

distributions

1√
D µ̃1,K

(µ̃1,K − µ1)

converge weakly to standard normal distribution as K →∞.
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But the coefficients ã cannot be used for the estimation, since the values di depend on the vector

of unknown parameters γ = (µ1, µ2, σ1, σ2). Therefore using the minimax coefficients we compute a

pilot estimate γ̄K = (µ̄1,K , µ̄2,K , σ̄1,K , σ̄2,K):

µ̄l,K =
1

K

K∑
i=1

āli,K
1

ni

ni∑
j=1

Yij , l = 1, 2,(3)

σ̄2l,K =
1

K

K∑
i=1

āli,K
1

ni

ni∑
j=1

Y 2
ij − µ̄2l,K , l = 1, 2.(4)

Then, the estimate for variance in group i equals

d̄i,K =
1

ni

(
w1
i σ̄

2
1,K + w2

i σ̄
2
2,K +

Ni − ni
Ni − 1

w1
iw

2
i (µ̄1,K − µ̄2,K)2

)
.

The estimate for weighted moments equals

r̄i,K =
1

K

K∑
i=1

(w1
i )j

d̄i,K
, i = 1, . . . ,K.

Now, adaptive coefficients âi,K are defined as

âi,K =
(r̄0,K − r̄1,K)w1

i + r̄2,K − r̄1,K
r̄0,K r̄2,K − r̄21,K

, i = 1, . . . ,K.

Hence, the adaptive estimate of mean will be

µ̂1,K = µ̂(âK) =
1

K

K∑
i=1

âi,KTi.

A valuable property of the adaptive estimate is its asymptotic normality with the same asymp-

totic variance as for the best estimate.

Theorem 3 In case of all conditions of Theorem 1 are fulfilled, the estimate µ̂1,K is consistent and

distributions

1√
D µ̃1,K

(µ̂1,K − µ1)

converge weakly to standard normal distribution as K →∞.

But such coefficients should be used carefully for small samples. Estimation of the group vari-

ances can introduce additional variability. That is why the simple minimax coefficients sometimes

perform better.

Maximum likelihood estimate

To use the maximum likelihood approach we need some parametric model of the data distribu-

tion. Let us consider the simplest case of Bernoully distribution of X in both classes with different

probabilities of success. I.e. X attains only the values 1 (success) or 0 (failure) with probability of

success P{X = 1} = ql for subjects, which belong to l-th class. The unknown parameter of this model

is q = (q1, q2).

We will treat group sizes (Ni1, Ni2) as independent random vectors with unknown distribution

G(n1, n2) = P (Ni1 = n1, Ni2 = n2) , n1, n2 ∈ N0.
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Let us consider total value for group i:

Xi =

Ni∑
j=1

Xij .

It can be shown, that statistics Si = (Xi, Ni1, Ni2) is sufficient for parameter q = (q1, q2)

estimation. Let us consider likelihood function

(5) L(S, t) =

K∑
i=1

ln f(Si, t) =

K∑
i=1

l(Si, t),

where l(Si, t) = lnPt (X = Xi, N1 = Ni1, N2 = Ni2).

Then the maximum likelihood estimate of q is

q̂ = argmax
t∈[0,1]2

L(S, t).

The following theorems establish consistency and asymptotic normality conditions of this esti-

mate.

Theorem 4 Let group sizes have finite mathematical expectations EqN1 <∞. If Pq (N11 = N12) < 1

or q1 ≤ q2, then maximum likelihood estimate is strongly consistent.

Theorem 5 Let group sizes have finite second order moments EqN
2
1 < ∞, the true value of the

parameter q ∈ (0, 1)2, and one of the following conditions is fulfilled

1. Pq (N11 = N12) < 1,

or

2. q1 < q2,

or

3. q1 = q2 and there is no constant C > 0, such that N11 = CN12 a.s.

Then the maximum likelihood estimate is asymptotically normal.

The advantage of this model is ability to provide estimates in case of constant concentrations.

In the special case of equal sizes (Ni1 = Ni2) model becomes simmetric and estimation of the model

parameter (q1, q2) is possible only up to a permutation.

Although this parametric model is very restrictive, it is possible to use it for nonparametric

estimation of means also. Really, let Xij be arbitrary random variables. Then for any real constant

C we may consider indicators 1{Xij<C}. Now we get our parametric case and compute estimates for

probabilities of success for two classes. These probabilities correspond to distribution functions for

two classes at point C. Further, when distribution functions are known, we can estimate all required

characteristics.

Genomic imprinting data analysis

Let us consider the special case of parametric model, discussed in the previous section. Let each

group consists of two elements, one from first and one from second classes, i.e. G(1, 1) = 1.

This model can be useful for studying the genomic imprinting phenomenon. Genomic imprinting

is a genetic phenomenon by which certain genes are expressed in a parent-of-origin-specific manner.

Let us consider expression of some gene of interest in organisms which are homozygous for this

gene. We will assume that phenotypic features of the i-th considered organism allow us to conclude

whether both alleles (Xi = 2), one (Xi = 1) or no allele (Xi = 0) of the gene are expressed in this
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organism. In this case each organism can be considered as a group, that consists of two subjects:

paternal and maternal chromosomes. Let Xi1 (Xi2) be 1 if the paternal (maternal) allele is expressed

in the i-th organism and zero otherwise. Then Xi = Xi1 + Xi2. Although the values of Xij are

not observable separately, we can use the sufficient statistics Xi to construct maximum likelihood

estimates for probabilities ql of gene expression from the l–th type allele.

Let

fi(t) = f(i, 1, 1, t) = g(i, 1, 1, t), i = 0, 1, 2.

Then the likelihood can be represented as

L(S, t) =

K∑
i=1

ln fXi(t) = K

2∑
l=0

νl ln fl(t),

where νl — is the frequency of values l in sample X1, . . . , XK .

In this case the maximum likelihood estimate can be written in the closed form:

q̂ =

(
µ

2
−
√
µ2

4
− ν2,

µ

2
+

√
µ2

4
− ν2

)
,

if ν2 ≤ µ2/4, and q̂ = (µ/2, µ/2) otherwise.

According to Theorem 4 the estimate q̂ is consistent. According to Theorem 5 it is asymptotically

normal, if 0 < q1 < q2 < 1. Note that if q1 > q2 one can enumerate the chromosomes in the reverse

order, so the probabilities of the expression can be estimated for alleles of both types. But we are not

able to identify what probability corresponds to the paternal or maternal chromosome in such case.

The asymptotic covariance matrix equals to the inverse of the information matrix

I =
1

q1 + q2 − 2q1q2


q1 + q22 − 2q1q2

q1 − q21
1

1
q21 + q2 − 2q1q2

q2 − q22

 .
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