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Introduction

Let VT be a class of distribution functions on the real line, V′ be a vector space (e.g., V′ = R),

and T : VT → V′ be a statistical functional. Let (Xt)t∈N be a strictly stationary sequence of random

variables with distribution function F ∈ VT . If F̂n denotes the empirical distribution functions of

X1, . . . , Xn, i.e., F̂n = 1
n

∑n
i=1 1[Xi,∞), then T (F̂n) can provide a reasonable estimator for T (F ). In

the context of nonparametric statistics, a central question concerns the asymptotic distribution of

T (F̂n). On the one hand, in the case of weakly dependent observations X1, X2, . . . satisfying certain

mixing conditions, there are several general results on the asymptotic distribution of T (F̂n) for various

functionals T . See, for instance, [4, 18] for L-functionals, and [5, 10, 11, 25] for V-functionals. On

the other hand, in the case of strongly dependent observations X1, X2, . . ., whose appearance has

been observed in numerous scientific areas [2, 3, 20], there are only a few results on the asymptotic

distribution of the plug-in estimator T (F̂n) for some selected functionals T ; see, for instance, [9, 17].

This paper (based on [4, 5, 6]) is concerned with a unifying approach for deriving the asymptotic

distribution of T (F̂n) for strongly dependent data. We will avail a version of the Functional Delta

Method (FDM). The latter allows to derive the asymptotic distribution of the plug-in estimator T (F̂n)

from the asymptotic distribution of the empirical distribution function F̂n as long as the functional

T is sufficiently regular, more precisely, Hadamard differentiable. The classical FDM [13, 14, 19] was

repeatedly criticized for its restricted range of applications. Many tail-dependent statistical functionals

T (e.g. general L- or V-functionals) are known to be non-Hadamard differentiable at F . However,

recently the concept of quasi-Hadamard differentiability was introduced in [4]. This is a weaker concept

of differentiability (in particular general L- and V-functionals can be shown to be quasi-Hadamard

differentiable), but it is still strong enough to obtain an FDM (referred to as Modified FDM); cf. [4,

Section 4]. The basic idea of quasi-Hadamard differentiability is to impose a norm only on a suitable

subspace V0 of the space D (⊃ VT ) of all bounded càdlàg functions on R (and not on all of D), and to

differentiate only in directions which lie in (some subset of) V0. It should be stressed that this is not

simply the notion of tangential Hadamard-differentiability [13, 14, 19] where the tangential space is

equipped with the same norm as D. The crucial point is that norms, which assign to F a finite length,

are often not strict enough to obtain “differentiability”. On the other hand, “differentiability” w.r.t.

such good-natured norms is typically not necessary. For details the reader is referred to [4, Section 1].

Upon having established quasi-Hadamard differentiability of a given statistical functional T ,

an application of the Modified FDM typically requires weak convergence of the underlying empirical

process w.r.t. a norm being stricter than the sup-norm ‖ · ‖∞, for instance w.r.t. a weighted sup-norm

‖·‖λ := ‖(·)φλ‖∞ with φλ(x) := (1+ |x|)λ for some λ > 0. Here λ depends on the considered statistical

functional T . Hence in the context of strongly dependent data, the crucial point is a Noncentral Limit

Theorem (NCLT) for the empirical distribution function in a weighted sup-norm. We will first of all

present such a result; cf. Theorem 1. Corresponding CLTs can be found in [22] for independent data,

in [7] for weakly dependent β-mixing data, in [21] for for weakly dependent α- and ρ-mixing data, and

in [24] for weakly dependent causal data.
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NCLT for the empirical distribution function of long-memory sequences

Let

Xt :=
∞∑
s=0

as εt−s, t ∈ N,(1)

where (εi)i∈Z are i.i.d. random variables on some probability space (Ω,F ,P) with zero mean and finite

variance, and the coefficients as satisfy
∑∞

s=0 a
2
s < ∞ (so that (Xt)t∈Z is an L2-process). We assume

that the sequence (Xt)t∈Z is strictly stationary with distribution function F . Many important time

series models, such as ARMA and FARIMA, take this form. If a0 = 1 and a1 = a2 = · · · = 0, then

the Xt are i.i.d. If at decays to zero at a sufficiently fast rate, then the covariances Cov(X1, Xt) are

summable over t ∈ Z and thus the process exhibits short-range dependence (weak dependence). If

at decays to zero at a sufficiently slow rate, then the covariances Cov(X1, Xt) are not summable over

t ∈ N and thus the process exhibits long-range dependence (strong dependence).

If the Xt are i.i.d., then it is commonly known that the empirical process n1/2(F̂n − F ) con-

verges in distribution to an F -Brownian bridge, i.e. to a centered Gaussian process with covariance

function Γ(s, t) = F (s ∧ t)F (s ∨ t). If the Xt are subject to a certain mixing condition (weak depen-

dence), then the limit in distribution of the empirical process n1/2(F̂n − F ) is known to be a centered

Gaussian process with covariance function Γ(s, t) = F (s∧ t)F (s∨ t) +
∑∞

k=2[Cov(1{X1≤s},1{Xk≤t}) +

Cov(1{X1≤t},1{Xk≤s})]; see [7, 12, 21, 24]. If the Xt exhibit long-range dependence (strong depen-

dence, long-memory), then the situation changes drastically: Assuming a moving average structure

(1) with as = s−β, s ∈ N, for β ∈ (12 , 1), and some additional regularity and moment conditions on

the distribution of ε0, one has

nβ−1/2(F̂n(·)− F (·)) d−→ cβ f(·)Z (in (D,D, ‖ · ‖∞))(2)

where Z is a standard normally distributed random variable, f is the Lebesgue density of F , cβ is some

constant, and D is the σ-algebra on D generated by the usual coordinate projections; see e.g. [8, 15, 16].

Notice the asymptotic degeneracy of the limit process in (2) which shows that the increments of the

standardized empirical distribution function F̂n over disjoint intervals, or disjoint observation sets, are

asymptotically completely correlated. Also notice the noncentral rate β − 1/2 in (2).

As indicated in the Introduction, for our purposes the use of the sup-norm ‖ · ‖∞ in (2) is

insufficient. We need a corresponding result for the weighted sup-norm ‖ · ‖λ := ‖(·)φλ‖∞. For λ ≥ 0,

let Dλ be the space of all càdlàg functions ψ on R with ‖ψ‖λ < ∞, and Cλ be the subspace of all

continuous functions in Dλ. We equip Dλ with the σ-algebra Dλ := D ∩ Dλ to make it a measurable

space, where as before D is the σ-algebra generated by the usual coordinate projections. Without loss

of generality we assume a0 = 1. The following theorem is proven in [6] using results from [1] and [23].

Theorem 1 (NCLT for F̂n) Let λ ≥ 0, and assume that

(i) as = s−β `(s), s ∈ N, where β ∈ (12 , 1) and ` is slowly varying at infinity,

(ii) E[|ε0|2+2λ] <∞,

(iii) the distribution function G of ε0 is twice differentiable and
∑2

j=1

∫
|G(j)(x)|2φ2λ(x) dx <∞.

Then we have the following analogue of (2):

nβ−1/2 `(n)−1(F̂n(·)− F (·)) d−→ c1,β f(·)Z (in (Dλ,Dλ, ‖ · ‖λ)),

where f is the Lebesgue density of F , Z is a standard normally distributed random variable, and

c1,β := {E[ε20](1− (β − 1
2))(1− (2β − 1))/(

∫∞
0 (x+ x2)−βdx)}1/2.
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NCLT for plug-in estimators based on long-memory sequences

We now turn to the application of the Modified FDM to T (F̂n). First of all we recall from [4]

the notion of quasi-Hadamard differentiability and the Modified FDM. Let V and V′ be vector spaces,

and V0 be a subspace of V. Let ‖ · ‖V0 and ‖ · ‖V′ be norms on V0 and V′, respectively.

Definition 2 (Quasi-Hadamard differentiability) Let T : VT → V′ be a mapping defined on a subset

VT of V, and C0 be a subset of V0. Then T is said to be quasi-Hadamard differentiable at θ ∈ VT

tangentially to C0〈V0〉 if there is some continuous mapping DHad
θ;C0〈V0〉T : C0 → V′ such that

lim
n→∞

∥∥∥DHad
θ;C0〈V0〉T (v)− T (θ + hnvn)− T (θ)

hn

∥∥∥
V′

= 0(3)

holds for each triplet (v, (vn), (hn)), with v ∈ C0, (vn) ⊂ V0 satisfying ‖vn − v‖V0 → 0 as well as

θ + hnvn ∈ VT for every n ∈ N, and (hn) ⊂ (0,∞) satisfying hn → 0. In this case the mapping

DHad
θ;C0〈V0〉T is called quasi-Hadamard derivative of T at θ tangentially to C0〈V0〉.

Let V0 and V ′ be σ-algebras on V0 and V′, respectively. Suppose that V0 is nested between the

open-ball and the Borel σ-algebra on V0, and that V ′ is not larger than the Borel σ-algebra on V′.

For every n ∈ N, let (Ωn,Fn,Pn) be a probability space, and θ̂n be a mapping from Ωn to V.

Theorem 3 (Modified Functional Delta Method) Let T : VT → V′ be a mapping defined on some

subset VT of V, let θ ∈ VT , let C0 be some subset of V0 being separable w.r.t. ‖ · ‖V0 (we regarded

‖ · ‖V0 as a metric if C0 is not a vector space), and suppose that

(i) θ̂n takes values only in VT ,

(ii) θ̂n − θ takes values only in V0, is (Fn,V0)-measurable and satisfies

rn(θ̂ − θ) d−→ V (in (V0,V0, ‖ · ‖V0))

for some sequence (rn) ⊂ (0,∞) with rn ↑ ∞, and some random element V of (V0,V0), on some

probability space (Ω,F ,P), taking values only in C0,

(iii) ω̃ 7→ T (W (ω̃) + θ) is (F̃ ,V ′)-measurable whenever W is a measurable mapping from some mea-

surable space (Ω̃, F̃) to (V0,V0) such that W (ω̃) + θ ∈ VT for all ω̃ ∈ Ω̃,

(iv) T is quasi-Hadamard differentiable at θ tangentially to C0〈V0〉 with quasi-Hadamard derivative

DHad
θ;C0〈V0〉T .

Then

rn(T (θ̂n)− T (θ))
d−→ DHad

θ;C0〈V0〉T (V ) (in (V′,V ′, ‖ · ‖V′)).

As an immediate consequence of Theorems 1 and 3 we now obtain the following NCLT for the

plug-in estimator T (F̂n). We choose V := D, V0 := Dλ, C0 := Cλ, and assume that VT is a class of

distribution functions on the real line containing F .

Theorem 4 (NCLT for T (F̂n)) Let λ ≥ 0, and assume that

(i) F̂n takes values only in VT ,

(ii) the assumptions of Theorem 1 are fulfilled,

(iii) ω̃ 7→ T (W (ω̃) + F ) is (F̃ ,V ′)-measurable whenever W is a measurable mapping from some

measurable space (Ω̃, F̃) to (Dλ,Dλ) such that W (ω̃) + F ∈ VT for all ω̃ ∈ Ω̃,
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(iv) T is quasi-Hadamard differentiable at F tangentially to Cλ〈Dλ〉 with quasi-Hadamard derivative

DHad
F ;Cλ〈Dλ〉T .

Then

nβ−1/2 `(n)−1(T (F̂n(·))− T (F (·))) d−→ DHad
F ;Cλ〈Dλ〉T (c1,β f(·)Z) (in (V′,V ′, ‖ · ‖V′)),

where β, c1,β, f and Z are as in Theorem 1.

Example 5 (L-functionals) Let K be the distribution function on [0, 1], and VK be the class of all

distribution functions F on the real line for which
∫
|x| dK(F (x)) <∞. The functional L, defined by

L(F ) := LK(F ) :=

∫
x dK(F (x)), F ∈ VK ,

is called L-functional associated with K. It was shown in [4] that if K is continuous and piecewise

differentiable, the (piecewise) derivative K ′ is bounded above and F ∈ VK takes the value d ∈ (0, 1)

at most once if K is not differentiable at d, then for every λ > 1 the functional L : VK → R is

quasi-Hadamard differentiable at F tangentially to Cλ〈Dλ〉 with quasi-Hadamard derivative

DHad
F ;Cλ〈Dλ〉L (v) =

∫
K ′(F (x)) v(x) dx ∀ v ∈ Cλ.

Thus, if also the assumptions of Theorem 1 are fulfilled with f ∈ Cλ, Theorem 4 (with V′ = R) yields

nβ−1/2 `(n)−1(L(F̂n)− L(F ))
d−→ Z̃ (in (R,B(R), | · |)),

where Z̃ is normally distributed with mean zero and variance c21,β(
∫
K ′(F (x))f(x)dx)2, and β and

c1,β are as in Theorem 1. 3

Example 6 (V-functionals) Let g : R2 → R be a measurable function, and Vg be the class of all

distribution functions F on the real line for which
∫ ∫
|g(x1, x2)|dF (x1)dF (x2) < ∞. The functional

U , defined by

U(F ) := Ug(F ) :=

∫ ∫
g(x1, x2) dF (x1)dF (x2), F ∈ Vg,

is called von Mises-functional (V-functional) associated with g. Let BVloc be the space of all functions

ψ : R→ R of local bounded variation. For ψ ∈ BVloc, we denote by dψ+ and dψ− the unique positive

Radon measures induced by the Jordan decomposition of ψ, and we set |dψ| := dψ+ + dψ−. Suppose

that, for some λ > λ′ ≥ 0, the following two assertions hold:

(a) For every x2 ∈ R fixed, the function gx2(·) := g( · , x2) lies in BVloc ∩ D−λ′ . Moreover, the

function x2 7→
∫
φ−λ(x1)|dgx2 |(x1) lies in D−λ′ .

(b) The functions g1,F (·) :=
∫
g( · , x2)dF (x2) and g2,F (·) :=

∫
g(x1, · )dF (x1) lie in BVloc, and we

have
∫
φ−λ(x) |dgi,F |(x) < ∞ for i = 1, 2. Moreover, the functions g1,F (·) :=

∫
|g( · , x2)|dF (x2)

and g2,F (·) :=
∫
|g(x1, · )|dF (x1) lie in D−λ′ .

It is shown in [5] that under assumptions (a)–(b) the functional U is quasi-Hadamard differentiable at

F tangentially to Cλ〈Dλ〉 with quasi-Hadamard derivative

DHad
F ;Cλ〈Dλ〉U (v) = −

∫
v(x)dg1,F (x)−

∫
v(x)dg2,F (x) ∀ v ∈ Cλ.(4)

Thus, if also the assumptions of Theorem 1 are fulfilled with f ∈ Cλ, Theorem 4 (with V′ = R) yields

nβ−1/2 `(n)−1(U(F̂n)− U(F ))
d−→ Z̃ (in (R,B(R), | · |)),(5)
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where Z̃ is normally distributed with mean zero and variance c21,β(
∫
f(x)dg1,F (x) +

∫
f(x)dg2,F (x))2,

and β and c1,β are as in Theorem 1.

It is easy to show that the variance kernel g(x1, x2) = 1
2(x1 − x2)2 and Gini’s mean difference

kernel g(x1, x2) = |x1 − x2| satisfy conditions (a)–(b) for λ′ = 2 and λ′ = 1 (respectively), where

dg1,F (x) = dg2,F (x) = (x− E[X1])dx and dg1,F (x) = dg2,F (x) = (2F (x)− 1)dx (respectively); cf. [5].

In the former case, however, it is straightforwardly seen that the asymptotic variance in (5) vanishes,

so that the right-hand side in (5) degenerates to zero. This is consistent with Example 1 in [9]. 3

Remark 7 (Degenerate V-functionals) Among V-functionals —introduced in Example 6— the func-

tionals with a so-called degenerate kernel have attracted special interest; see, e.g., [8, 9]. A kernel g

is called degenerate w.r.t. F ∈ Vg if the functions g1,F and g2,F defined in part (b) in Example 6 are

identically zero. In this case, U is called degenerate V-functional w.r.t. F . Moreover, in this case the

right-hand side in (4) vanishes and thus the right-hand side in (5) degenerates to zero. That is, an

application of Theorem 4 yields little. However, in this case one can exploit the Continuous Mapping

Theorem (CMT) instead of the Modified FDM. Indeed: By the degeneracy of the kernel g we have

the representation U(F̂n) =
∫ ∫

g(x1, x2) d(F̂n − F )(x1)d(F̂n − F )(x2) and it was pointed out in [8,

Section 2] that, under certain conditions on g and F , integration-by-parts yields

U(F̂n) =

∫ ∫
(F̂n − F )(x1)(F̂n − F )(x2) dg(x1, x2).(6)

To apply integration-by-parts, it was assumed in [8] that the kernel g is right-continuous and has

bounded total variation. However, as the assumption that g be of bounded total variation is too

restrictive, the result of [8, Section 2] was extended in [9] to more general kernels. A related, slightly

stronger result can be found in [6]. Now, if the assumptions of Theorem 1 hold for some λ ≥ 0

for which the integral
∫ ∫

φ−λ(x1)φ−λ(x2) |dg|(x1, x2) is finite, then we immediately obtain from (6),

Theorem 1, U(F ) = 0 (which holds by the degeneracy of g) and the CMT that

n2β−1 `(n)−2 U(F̂n)
d−→
(
c21,β

∫ ∫
f(x1)f(x2)dg(x1, x2)

)
Z2 (in (R,B(R), | · |)),

where Z2 is χ2
1-distributed, and β and c1,β are as in Theorem 1. For details, in particular for the

conditions on g and F ensuring the representation (6), see [6]. 3
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ABSTRACT

Noncentral limit theorems for statistical functionals based on strictly stationary time series ex-

hibiting long-range dependence are presented. The key tool is a noncentral limit theorem for empirical

processes of long-memory data with respect to nonuniform sup-norms. Using a modified Functional

Delta Method, based on the new concept of quasi-Hadamard differentiability, one can easily derive the

asymptotic distribution of fairly general statistics, including L- and V-statistics.
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