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1 Introduction

The Forward Search (FS) applied to the analysis of data divides the data into a good portion that

agrees with the postulated model and a set of outliers, if any (Atkinson et al., 2004, 2010). In this

paper we deal with the one-population multivariate setting, where the sample is made of v-dimensional

observations y1, . . . , yn and the postulated model states that yi ∼ N(µ,Σ).

The basic idea of the FS is to start from a small, robustly chosen, subset of the data and to

fit subsets of increasing size, in such a way that outliers and other observations not following the

general structure are revealed by diagnostic monitoring. Let m0 be the size of the starting subset.

Usually m0 = v + 1 or slightly larger. Let S(m) be the subset of data fitted by the FS at step m

(m = m0, . . . , n). At that step, the outlyingness of yi is evaluated through its squared distance

(1) d̂2
i (m) = {yi − µ̂(m)}′Σ̂(m)−1{yi − µ̂(m)},

where µ̂(m) and Σ̂(m) are the estimates of µ and Σ computed from S(m). The squared distances

d̂2
1(m), . . . , d̂2

n(m) are then ordered to obtain the fitting subset at step m + 1.

Whilst S(m) remains outlier free, the squared distances d̂2
i (m) will not suffer from masking and

swamping. Therefore, they are a robust estimate of the population Mahalanobis distances

(2) d2
i = (yi − µ)′Σ−1(yi − µ), i = 1, . . . , n.

The main diagnostic quantity computed from the robust distances (1) at step m is d̂2
imin

(m), where

imin = arg min d̂2
i (m) i /∈ S(m)

is the observation with the minimum squared Mahalanobis distance among those not in S(m). The

key idea is that the robust distance of the observation entering the subset at step m + 1 will be large

if this observation is an outlier. Its peculiarity will then be revealed by a peak in the forward plot of

d2
imin

(m).

Riani et al. (2009) develop a formal outlier test of the null hypothesis

(3) H0s : {y1 ∼ N(µ,Σ)} ∩ {y2 ∼ N(µ,Σ)} ∩ . . . ∩ {yn ∼ N(µ,Σ)},
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based on the sequence d̂2
imin

(m), m = m0, . . . , n. In this test, the values of d̂2
imin

(m) are compared to

the FS envelope

(4) V 2
m,α/σT (m)2,

where V 2
m,α is the 100α% cut-off point of the (m + 1)th order statistic from the scaled F distribution

(5)
(m2 − 1)v

m(m − v)
Fv,m−v,

and the factor

(6) σT (m)2 =
P (X2

v+2 < χ2
v,m/n)

m/n

allows for trimming of the n−m largest distances. In this factor χ2
v,m/n is the m/n quantile of χ2

v and

X2
v+2 ∼ χ2

v+2.

A major advantage of the FS is to strive a balance between the two enemy brothers of robust

statistics: robustness against contamination and efficiency under the postulated multivariate normal

model. The properties of the FS, together with the use of accurate finite-sample distributional results,

lead to a detection rule for multivariate outliers that has low swamping with well behaved data and

high power under a variety of contamination schemes. Extensive evidence of this behaviour is shown

by Riani et al. (2009).

All the forward search routines for regression and multivariate analysis are contained in the

FSDA toolbox for MATLAB and are freely downloadable from http://www.riani.it/MATLAB. The

FSDA toolbox also contains a series of dynamic tools which enable the user to link the information

present in different forward plots and the routines to compute S and MM estimators both in regression

and in multivariate analysis.

In this paper we make a comparison with inferences that come from other popular robust

multivariate techniques, including multivariate MM and S-estimators. A sketch of these estimators is

given in §2, where the size of the resulting outlier tests is investigated under (3) and different tunings

of control parameters. Power is then investigated in §3, where we provide direct comparison with the

FS and with the reweighted-MCD outlier detection rule of Cerioli (2010).

2 Null performance of multivariate S and MM estimators

For µ̃ ∈ Rv and Σ̃ belonging to the set of positive definite symmetric v × v matrices, S estimators of

multivariate location and scatter, say µ̃S and Σ̃S , are defined (Rousseeuw and Leroy, 1987) to be the

solution of the minimization problem |Σ̃| = min under the constraint

(7)
1

n

n
∑

i=1

ρ(d̃2
i ) = δ,

where

(8) d̃2
i = (yi − µ̃)′Σ̃−1(yi − µ̃)

denotes the (robust) estimate of (2) based on µ̃ and Σ̃, ρ(x) is a smooth function satisfying suitable

regularity and robustness properties, and

(9) δ = E{ρ(z′z)}
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for a v-dimensional vector z ∼ N(0, I). Perhaps the most popular choice for the ρ function in (7) is

Tukey’s Biweight function

(10) ρ(x) =

{

x2

2 − x4

2c2
+ x6

6c4
if |x| ≤ c

c2

6 if |x| > c,

where c > 0 is a tuning constant. The value of c controls the breakdown point of µ̃S and Σ̃S ; see, e.g.,

Rousseeuw and Leroy (1987, pp. 135–143) for details.

Given the very robust S estimators µ̃S and Σ̃S , an improvement in efficiency is sometimes advo-

cated by computing refined location and shape estimators (Salibian-Barrera, Van Aelst and Willems,

2006). These estimators, called MM estimators, are defined as the minimizers of

(11)
1

n

n
∑

i=1

ρ∗(
˜̃
d2

i ),

where

(12)
˜̃
d2

i = (yi − ˜̃µ)′ ˜̃Σ−1(yi − ˜̃µ)

and the function ρ∗(x) provides higher efficiency than ρ(x) at the null multivariate normal model.

Minimization of (11) is carried over all ˜̃µ ∈ Rv and all ˜̃Σ belonging to the set of positive definite

symmetric v × v matrices with | ˜̃Σ| = 1. The MM estimator of µ is then µ̃MM = ˜̃µ, while

Σ̃MM =
(

|Σ̃S |
1

v

)

˜̃Σ.

Most published research on the properties of multivariate S and MM estimators focuses on

asymptotic efficiency comparisons. Little is known about the empirical behaviour of the robust squared

distances (8) and (12) when they are used for the purpose of detecting multivariate outliers. Cerioli

et al. (2009) and Cerioli (2010) show that asymptotic distributional results for robust distances may

require considerable sample sizes in order to be applied with some confidence in practice. Therefore,

we start our investigation of the empirical performance of outlier detection rules based on multivariate

S and MM estimators by examining their behaviour when no outlier is present in the data.

Size estimation is performed by Monte Carlo simulation of data sets generated from the v-

variate normal distribution N(0, I), due to affine invariance of the squared distances (8) and (12) when

computed from the robust estimators (µ̃S , Σ̃S) and (µ̃MM , Σ̃MM ). The estimated size of each outlier

detection rule is defined to be the proportion of simulated data sets for which the null hypothesis (3)

is wrongly rejected. To perform hypothesis testing, we need appropriate cut-off values for the squared

robust distances, whose exact distribution is unknown. Therefore, the squared robust distances are

compared to the α/n quantile of their asymptotic distribution, which is χ2
v. The Bonferroni correction

ensures that the actual size of the test of (3) will be bounded by the specified value of α if the χ2
v

approximation is adequate. In our investigation we also evaluate the effect on empirical test sizes of

each of some user-defined tuning constants required for practical computation of multivariate S and

MM estimators with Tukey’s Biweight function (10). See, e.g., Todorov and Filzmoser (2009) for

computational details. Specifically, we consider:

• bdp: breakdown point of the S estimators, which is inherited by the MM estimators as well (the

default value is 0.5);

• eff: efficiency of the MM estimators (the default value is 0.95);

• eff.shape: dummy variable setting whether efficiency of the MM estimators is defined with

respect to shape (eff.shape= 1, the default value) or to location (eff.shape = 0);
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• sampS: number of sub-samples of dimension (p + 1) in the resampling algorithm for fast compu-

tation of S estimators (our default value is 100);

• iterMM: number of iterations in the Iterative Reweighted Least Squares algorithm for computing

MM estimators (our default value is 20).

Table 1 reports the results for n = 200, v = 5 and v = 10, when α = 0.01 is the nominal size

for testing the null hypothesis (3) of no outliers and 5000 independent data sets are generated for

each combination of parameter value. It is seen that the outlier detection rules based on the robust

S and MM distances can be moderately liberal, but with estimated sizes often not too far from the

nominal target. As expected, liberality increases with dimension and with the amount of trimming,

both for S and MM estimators. Efficiency of the MM estimators (eff) is the only tuning constant

which seems to have a major impact on the null behaviour of these detection rules. This is because

the computation of Σ̃MM does not involve a trimming factor like (6).

All in all, we conclude that the squared robust distances computed from S and MM estimators

using the default tuning parameters provide an acceptable tool for the purpose of multivariate outlier

detection if we are willing to tolerate a moderate amount of liberality when (3) is true.

Table 1: Estimated size of the test of (3) for n = 200 and nominal test size α = 0.01. 5000 independent

data sets are generated for each combination of parameter values.

all parameters bdp eff eff.shape sampS iterMM

default values 0.15 0.25 0.8 0.98 0 10 500 10 500

v=5

S 0.023 0.010 0.014 0.023 0.023 0.023 0.026 0.024 0.023 0.023

MM 0.021 0.019 0.020 0.023 0.015 0.023 0.021 0.020 0.022 0.023

v=10

S 0.033 0.005 0.007 0.033 0.033 0.033 0.031 0.036 0.033 0.033

MM 0.038 0.035 0.028 0.068 0.019 0.038 0.0286 0.030 0.034 0.036

3 Power comparison

Having roughly the appropriate size, the outlier detection rules based on multivariate S and MM

estimators can be evaluated from the point of view of power. We also include in our comparison the

FS outlier detection method of Riani et al. (2009) and the finite-sample Reweighted MCD (RMCD)

technique of Cerioli (2010). Both these additional rules use cut-off values from accurate approximations

to the exact distribution of the robust distances and have very good control of the size of the test of

(3) even for sample sizes considerably smaller than n = 200.

Average power of an outlier detection rule is defined as the proportion of contaminated obser-

vations rightly named to be outliers. We estimate it by simulation, in the case n = 200 and v = 5.

Performance in higher dimension, where Tukey’s Biweight function is known to have problems with

contaminated data, will be studied elsewhere.

We generate v-variate observations from the location-shift contamination model

(13) yi ∼ (1 − δ)N(0, I) + δN(0 + λe, I), i = 1, . . . , n,

where 0 < δ < 0.5 is the contamination rate, λ is a positive scalar and e is a column vector of ones.

Again, the 0.01/n quantile of χ2
v is our cut-off value for outlier detection using the squared robust

distances computed from S and MM estimators. We only consider the default choices for the tuning

constants in Table 1, since they provide an acceptable performance under (3). We base our estimate

of average power on 5000 independent data sets for each combination of parameter values.
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Table 2: Estimated average power for different shifts λ in the contamination model (13), in the case

n = 200 and v = 5, when the contamination rate δ = 0.05. 5000 independent data sets are generated

for each combination of parameter values.

mean shift λ

2 2.2 2.4 2.6 2.8 3 4

S 0.3442 0.5252 0.6960 0.8273 0.9119 0.9632 1.0

MM 0.1484 0.2801 0.4658 0.6724 0.8359 0.9354 1.0

RMCD 0.2265 0.3896 0.5741 0.7322 0.8563 0.9355 1.0

FS 0.3586 0.5665 0.7297 0.8397 0.9087 0.9528 1.0

Tables 2–4 provide the results for different values of δ. If the contamination rate is small, it is

seen that the four methods behave somewhat similarly, with FS often ranking first and MM always

ranking last as λ varies. However, when the contamination rate increases, the advantage of the Forward

Search detection rule is paramount. In that situation both S and MM estimators become ineffective

for the purpose of identifying multivariate outliers.

Table 3: Estimated average power for different shifts λ in the contamination model (13), in the case

n = 200 and v = 5, when the contamination rate δ = 0.15. 5000 independent data sets are generated

for each combination of parameter values.

mean shift λ

2 2.2 2.4 2.6 2.8 3 3.4 4

S 0.0730 0.2329 0.5322 0.7716 0.9013 0.9601 0.9955 0.9999

MM 0.0059 0.0077 0.0101 0.0123 0.0163 0.0262 0.3969 0.9936

RMCD 0.0962 0.2269 0.4283 0.6516 0.8151 0.9132 0.9880 0.9998

FS 0.5800 0.7380 0.8026 0.8781 0.9346 0.9653 0.9934 0.9999

Table 4: Estimated average power for different shifts λ in the contamination model (13), in the case

n = 200 and v = 5, when the contamination rate δ = 0.30. 5000 independent data sets are generated

for each combination of parameter values.

mean shift λ

2 2.2 2.4 2.6 2.8 3 4 6 8 10

S 0.0033 0.0043 0.0053 0.0063 0.0073 0.0088 0.0162 0.0922 0.7719 0.9757

MM 0.0021 0.0027 0.0034 0.0042 0.0047 0.0058 0.0115 0.0849 0.7694 0.9754

RMCD 0.0099 0.0494 0.1593 0.3814 0.6370 0.8393 0.9997 1 1 1

FS 0.6269 0.8657 0.9145 0.9195 0.9410 0.9669 0.9997 1 1 1

A qualitative explanation for the failure of multivariate MM estimators is shown in Figure 1 in the

simple case v = 2. The four plots display bivariate ellipses corresponding to 0.95 probability contours

at different iterations of the algorithm for computing MM estimators, for a data set simulated from

the contamination model (13) with n = 200, δ = 0.15 and λ = 3. The data can be reproduced using

function randn(200,2) of MATLAB and putting the random number seed to 2. The contaminated

units are shown with symbol ◦ and the two lines which intersect the estimate of the robust centroid

are plotted using a dash-dot symbol. The upper left-hand panel corresponds to the first iteration (i1),

where the location estimate is µ̃S = (0.19, 0.18)′ and the value of the robust correlation r derived from

Σ̃S is 0.26. In this case the robust estimates are not too far from the true parameter values µ = (0, 0)′

and Σ = I, and the corresponding outlier detection rule (i.e., the S-rule in Table 3) can be expected
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to perform reasonably well. On the contrary, as the algorithm proceeds, the ellipse moves its center

far from the origin and the variables artificially become more correlated. The value of r in the final

iteration (i8) is 0.47 and the final centroid ˜̃µ = µ̃MM is (0.37; 0.32)′. These features increase the bias

of the parameter estimates and can contribute to masking in the supposedly robust distances (12).

−2 0 2 4 6
−2

0

2

4

i1, ˜̃µ = (0.19,0.18)′, r =0.26
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Figure 1: Ellipses corresponding to 0.95 probability contours at different iterations of the algorithm

for computing multivariate MM estimators, for a data set simulated from the contamination model

(13) with n = 200, v = 2, δ = 0.15 and λ = 3.
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