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1. Introduction

Canonical correlation analysis (CCA) is often used to analyze the correlation between two ran-

dom vectors (for examples, see Anderson (2003), Siotani et al. (1985), Sugiura (1976)). However,

sometimes interpretation of CCA results may be hard. As an attempt of addressing these difficul-

ties, Sugiyama and Takeda (1999) proposed principal canonical correlation analysis (PCCA). PCCA

is CCA between two sets of principal component (PC) scores. That is, each set of PC scores (com-

ponents) is calculated from each random vector by principal component analysis (PCA). PCCA uses

each set of PC scores instead of the original random vectors. PCA transforms a given data set of

correlated variables into a new data set of uncorrelated variables, or PC scores. Each PC score is

defined from the original variable set and retains a certain percentage of the inherent variability. Each

PC score accounts for a decreasing proportion of the total variance inherent in the data. Therefore,

it is assumed that PCCA has some merit.

Because PC scores descend in order of the amount of information that they contain, it is im-

portant to select useful PC scores in PCCA. By using only selected PC scores, it will be easier to

interpret the CCA. Some procedures for selecting variables in CCA of random vectors have been pro-

posed. Several authors (Fujikoshi (1985), Ichikawa and Konishi (1999), Fujikoshi and Kurata (2008),

Konishi and Kitagawa (2008)) have proposed the use of a method based on Akaike’s (1973) idea.

Ogura (2010) formally investigated the same criterion in an application of PCCA, proposing a vari-

able selection criterion for one set of PC scores in PCCA, and proposed some advantages of using

this procedure. For example, the principal canonical correlation coefficients from selected PC scores

provide almost the same information about the principal canonical correlation coefficients as do those

from all PC scores. Furthermore, it is easier to interpret the canonical variables. The effectiveness of

this procedure was demonstrated using an example.

In this paper we propose a variable selection criterion for two sets of PC scores in PCCA

that is an extension of Ogura’s (2010) approach, based on a reasonable derivation. Furthermore, we

demonstrate the effectiveness of this criterion using a simulation and an example. We also compare
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variable selection for two sets of PC scores in PCCA with variable selection for one set of PC scores.

2. A General Criterion for the Selection of Covariance Structure

We use a general approach for selecting the best model from a set of covariance structure

models. For the selection of variables in CCA, Fujikoshi (1985) and Fujikoshi and Kurata (2008)

proposed a criterion based on Akaike’s idea (Akaike (1973)). We summarize the original idea and

the resulting criterion, as presented in their paper. Let z = (x
′
,y

′
)
′
= (x1, . . . , xp, y1, . . . , yq)

′
be a

(p + q)-dimensional random vector with mean vector µ and covariance matrix Σ . Suppose that a

sample Z = (z1, . . . , zN )
′
of size N = n + 1 is available. Let S be the usual unbiased estimator of

Σ . Let Ω be a subset of the set of symmetric positive definite matrices. Suppose that a covariance

structure model M is defined by

M : Σ ∈ Ω .

As a measure of the goodness-of-fit of Σ for a given sample covariance matrix S, we use

D(S,Σ) = −n log |Σ−1S|+ n{trΣ−1S − (p+ q)}.

Note that, apart from a constant term, this measure is equal to ”−2 log likelihood” of Σ based on S

under the assumption of normality. More precisely, the measure may be regarded as essentially ”−2

log likelihood” of Σ based on the sample Z = (z1, . . . , zN )
′
, after being maximized with respect to

µ. Let Σ̂ be the minimum distance estimator under M , defined by

min
M

D(S,Σ) = D(S, Σ̂).

Following Akaike’s idea, we define the risk function of M as

R = EFEZ [D(SF , Σ̂)],

where SF is the sample covariance matrix for a future sample F = (f1, . . . ,fN )
′
that has the same

distribution as Z, and is independent of Z. The notations EF and EZ denote the expectations with

respect to the true model of F and Z, respectively. A general model selection criterion is suggested

by considering an estimator for R. We can write

R = EFEZ [D(SF , Σ̂)] +B,

where

B = EFEZ [D(SF , Σ̂)−D(S, Σ̂)].

The quantity B is the bias term when we estimate R by D(S, Σ̂). Following Akaike, we have a

distance information criterion (DIC, see, e.g., Fujikoshi and Kurata (2008)), defined by

DIC = −n log |Σ̂−1
S|+ n{trΣ̂−1

S − (p+ q)}+B0,(1)

where B0 is the number of independent parameters under M . The first term is a likelihood ratio

statistic for M . The second term becomes zero for the covariance structure model M considered in

this paper. When z is normal, DIC is essentially the same as AIC, apart from the constant term.

However, DIC can be used even when the distribution of z is non-normal. In general, it has been

pointed out that AIC (and hence DIC) underestimates its risk function for overspecified models. To

overcome this weakness, attempts have been made to evaluate B and obtain an estimator which is
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less biased. The bias term can be expressed as

B = EFEZ [−n log |Σ̂−1
SF |+ ntrΣ̂

−1
SF − n(p+ q)

−{−n log |Σ̂−1
S|+ ntrΣ̂

−1
S − n(p+ q)}]

= EFEZ [−n log |SF |+ n log |S|+ ntrΣ̂
−1

SF − ntrΣ̂
−1

S]

= EZ [ntrΣ̂
−1

(Σ − S)]

= EZ [ntrΣ̂
−1

Σ ]− n(p+ q), (if trΣ̂
−1

S = p+ q).(2)

3. The Variable Selection Model

We first summarize the notation. Let a random vector z of (p+q) components with an unknown

covariance matrix Ψ , which is assumed to be symmetric and positive definite. We partition z into

two subvectors, x and y, of p and q components as

z =

(
x

y

)
.

Similarly, the covariance matrix of z is partitioned into p and q,

Cov

[(
x

y

)]
= Ψ =

(
Ψxx Ψxy

Ψyx Ψyy

)
,(3)

where Ψxx is p× p, Ψxy is p× q, Ψyx is q × p, and Ψyy is q × q. Let λ1x ≥ . . . ≥ λpx be the ordered

latent roots of Ψxx, and let γ1x, . . . ,γpx be the corresponding latent vectors with γ
′
ixγjx = δij , where

δij is the Kronecker delta, i.e., δii = 1, and δij = 0 for i ̸= j. Similarly, let λ1y ≥ . . . ≥ λqy be the

ordered latent roots of Ψyy and γ1y, . . . ,γqy the corresponding latent vectors with γ
′
iyγjy = δij . We

can decompose Ψxx and Ψyy as:

Γ
′
xΨxxΓx = Σuu = Λu, Γ

′
yΨyyΓ y = Σ vv = Λv,

where Λu = diag(λ1x, . . . , λpx) and Λv = diag(λ1y, . . . , λqy) are diagonal matrices, Γx = (γ1x, . . . ,γpx)

and Γ y = (γ1y, . . . ,γqy) are orthogonal matrices. PC scores of x and y are then defined by u = Γ
′
xx

and v = Γ
′
yy, respectively. We denote the covariance matrix of (u′, v′)′ by

Cov

[(
u

v

)]
= Σ =

(
Σuu Σuv

Σ vu Σ vv

)
.(4)

Then, there is a relationship between Ψ and Σ such that

Γ ′ΨΓ = Σ ,(5)

which is expressed as (
Λu Γ

′
xΨxyΓ y

Γ
′
yΨyxΓx Λv

)
=

(
Σuu Σuv

Σ vu Σ vv

)
,

where

Γ =

(
Γx 0

0 Γ y

)
.

Now, we consider the covariance structure that corresponds to the variable selection model

for two sets of PC scores. For this, we partition u into two subvectors u
′
1 = (u1, . . . , up1) and

u
′
2 = (up1+1, . . . , up) of p1 and (p− p1) components, and v into two subvectors v

′
1 = (v1, . . . , vq1) and
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v
′
2 = (vq1+1, . . . , vq) of q1 and (q − q1) components, such that u = (u

′
1 u

′
2)

′
and v = (v

′
1 v

′
2)

′
. We use

the following notations,

Σ =

(
Σuu Σuv

Σ vu Σ vv

)
=


Σ11 Σ12 Σ13 Σ14

Σ21 Σ22 Σ23 Σ24

Σ31 Σ32 Σ33 Σ34

Σ41 Σ42 Σ43 Σ44

 =


Λ1 0 Σ13 Σ14

0 Λ2 Σ23 Σ24

Σ31 Σ32 Λ3 0

Σ41 Σ42 0 Λ4

 ,(6)

where Λ1 = diag(λ1x, . . . , λp1x), Λ2 = diag(λ(p1+1)x, . . . , λpx), Λ3 = diag(λ1y, . . . , λq1y), and Λ4 =

diag(λ(q1+1)y, . . . , λqy). Note that there is a one-to-one correspondence between the parameter sets of

Ψ and {Σ ,Γ}. Because the covariance matrix of PC scores depends on Σ , it is only natural that

the variable selection model is introduced through Σ . Let Mp1,q1 be the variable selection model that

represents a redundancy of u2 and v2 or a sufficiency of u1 and v1 in CCA between (u
′
1,u

′
2) and

(v
′
1,v

′
2). For the following, we simply write Mp1,q1 as Mr. The model may be defined (for an example,

see Fujikoshi (1982)) as

Mr : trΣ
−1
uuΣuvΣ

−1
vv Σ vu = trΣ−1

11 Σ13Σ
−1
33 Σ31.(7)

Note that the model Mr is related to graphical models (see Anderson (2003)). The condition (7) can

be expressed as:

tr

(
Λ1 0

0 Λ2

)−1(
Σ13 Σ14

Σ23 Σ24

)(
Λ3 0

0 Λ4

)−1(
Σ31 Σ32

Σ41 Σ42

)
= trΣ−1

11 Σ13Σ
−1
33 Σ31

⇔ Σ14 = 0,Σ23 = 0,Σ24 = 0.(8)

Then it is shown that the model Mr is equivalent to that Σ has the following structure:

Σ r =


Σ11 0 Σ13 0

0 Σ22 0 0

Σ31 0 Σ33 0

0 0 0 Σ44

 =


Λ1 0 Σ13 0

0 Λ2 0 0

Σ31 0 Λ3 0

0 0 0 Λ4

 .(9)

4. An Information Criterion for a Variable Selection Model

Let T be the sample covariance matrix based on the sample of z = (x
′
,y

′
)
′
of size N = n+ 1,

and partition T as

T =

(
Txx Txy

Tyx Tyy

)
,

in accordance with the partition of z. Then, the latent roots λ1x ≥ . . . ≥ λpx of Ψxx and the

corresponding latent vectors γ1x, . . . ,γpx are estimated by the latent roots l1x ≥ . . . ≥ lpx of Txx and

the corresponding latent vectors h1x, . . .hpx, respectively. Similarly, the latent roots λ1y ≥ . . . ≥ λqy of

Ψyy and the corresponding latent vectors γ1y, . . . ,γqy are estimated by the latent roots l1y ≥ . . . ≥ lqy
of Tyy and the corresponding latent vectors h1y, . . .hqy, respectively.

Consider to estimate Ψ by minimizing

D(T ,Ψ) = −n log |Ψ−1T |+ n{trΨ−1T − (p+ q)},

under Mr. We have Ψ = ΓΣΓ ′. Therefore, as a naive estimator of Ψ it is natural to consider an

estimator in the form Ψ (1) = HΣH ′, where Hx = (h1x, . . . ,hpx), Hy = (h1y, . . . ,hqy),

H =

(
Hx 0

0 Hy

)
.
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Then we have

D(T ,Ψ (1)) = −n log |Ψ−1
(1)T |+ n{trΨ−1

(1)T − (p+ q)}

= −n log |Σ−1S|+ n{trΣ−1S − (p+ q)} = D(S,Σ),

where

S =

(
H

′
xTxxHx H

′
xTxyHy

H
′
yTyxHx H

′
yTyyHy

)

=


S11 0 S13 S14

0 S22 S23 S24

S31 S32 S33 0

S41 S42 0 S44

 =


D1 0 S13 S14

0 D2 S23 S24

S31 S32 D3 0

S41 S42 0 D4

 ,(10)

Here, D1 = diag(l1x, . . . , lp1x), D2 = diag(l(p1+1)x, . . . , lpx), D3 = diag(l1y, . . . , lq1y),

and D4 = diag(l(q1+1)y, . . . , lqy).

Now we consider to derive DIC for Mr. Under Mr, it is assumed that Σ has the structure

Σ r in (9). Here, for the diagonal elements of Λi, i = 1, 2, 3, 4 it is assumed that these are unknown

parameters satisfying λ1x ≥ · · · ≥ λpx > 0 and λ1y ≥ · · · ≥ λqy > 0. Our purpose is to derive

DIC = −n log |Σ̂−1
r S|+ n{trΣ̂−1

r S − (p+ q)}+B0,

where B0 is the number of independent parameters in the set of Σ under Mr, and Σ̂ r is the minimum

distance estimator satisfying

min
Mr

D(S,Σ) = D(S, Σ̂ r).

Then, we obtain the minimum distance estimator of Σ under Mr as follows:

Σ̂11 = S11, Σ̂22 = S22, Σ̂33 = S33, Σ̂44 = S44, Σ̂13 = S13,

and hence Σ̂ (13)(13) = S(13)(13). The minimum distance estimator can be expressed in a matrix form

as:

Σ̂ r = Sr =


S11 0 S13 0

0 S22 0 0

S31 0 S33 0

0 0 0 S44

 =


D1 0 S13 0

0 D2 0 0

S31 0 D3 0

0 0 0 D4

 .(11)

We now derive a closed form of DIC. It is easily seen that

|Σ̂−1
r S| = |S|

|Sr|
=

|S(13)(13)||S(24)(24)·13|
|S(13)(13)||S22||S44|

=
|S(24)(24)·13|
|S22||S44|

,(12)

and

trΣ̂
−1
r S = trΣ̂

−1
(13)(13)S(13)(13) + trΣ̂

−1
22 S22 + trΣ̂

−1
44 S44

= p1 + q1 + p− p1 + q − q1 = p+ q.(13)

Since Σ has a structure given in (9), the independent number of Σ under Mr is given as p+ q+ p1q1.

Further, Γx and Γ y are orthogonal matrices of orders p and q, respectively,

B0 = 2

{
p+ q + p1q1 +

1

2
p(p− 1) +

1

2
q(q − 1)

}
= 2

{
1

2
(p+ q)(p+ q + 1)− (p− p1)(q − q1)− p1(q − q1)− (p− p1)q1

}
.(14)
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Substituting (12), (13) and (14) into (1), we obtain:

DIC = −n log{|S(24)(24)·13|/(|S22||S44|)}

+2

{
1

2
(p+ q)(p+ q + 1)− (p− p1)q − p1(q − q1)

}
.(15)

In the use of DIC, we calculate DIC of each subset of u and v. The subset to which DIC is minimized

is the best subset. In PCCA, as being pointed in Section 1, we may consider only the subsets such

that

{u1, . . . , ui} ∪ {v1, . . . , vj}, i = 1, . . . , p, j = 1, . . . , q.

That is, in PCCA, it is sufficient to calculate DIC in times of (p× q) times. However, If we consider

all the subsets of the original variables, we need to calculate DIC in times of {(2p − 1) × (2q − 1)}
times. This is one of the advantages using PCCA instead of CCA.

5. A Numerical Example

We demonstrate the effectiveness of DIC by using a numeric example. The results are shown

on the day of our representation.
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