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Introduction

In the last years different statistical procedures with fuzzy random variables have been intro-

duced. In particular, in literature there are different works about the regression in this context. A

useful kind of fuzzy numbers used for the formalization of imprecise values is the so-called LR fam-

ily. A linear regression model with an LR fuzzy response and a real explanatory variable has been

introduced and analyzed in Ferraro et al. (2010, 2011). The main idea is to jointly consider three

regression models involving the center and two transformations of the left and the right spread of the

fuzzy response variable. In this way it is possible to overcome the non-negativity condition of the

spreads that is one of the main difficulties in this context.

Since the inferences developed for such model are meaningful only if the relationship is indeed

linear, in this paper a linearity test for the above linear regression model is introduced and discussed.

The proposed linearity test takes inspiration from Stute (1997). It is based on empirical pro-

cesses of the regressors marked by the residuals. Taking into account some properties of the linear

combinations, it can be used a linear combination of the test statistics referred to each model or a test

statistic of a model in which the response is a linear combination of the three responses.

Preliminaries

A fuzzy set Ã is characterized by means of a membership function µ
Ã

: R → [0, 1] so that

µ
Ã

(x) is the membership degree of x in the fuzzy set Ã (Zadeh, 1965). The members of the LR

family, FLR, are the so-called LR fuzzy numbers, determined by three values: the center, the left

and the right spread (see, for example, Coppi et al., 2006). Namely, a mapping s : FLR → R3, i.e.,

s(Ã) = s
Ã

= (Am, Al, Ar) (where Am, Al ≥ 0, Ar ≥ 0 are, respectively, the center, the left and the

right spread), is associated to each LR fuzzy set Ã. In what follows it is indistinctly used Ã ∈ FLR or
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(Am, Al, Ar) ∈ R3. The membership function of Ã ∈ FLR can be written as

(1) µ
Ã

(x) =


L
(
Am−x
Al

)
x ≤ Am, Al > 0,

1{Am}(x) x ≤ Am, Al = 0,

R
(
x−Am

Ar

)
x > Am, Ar > 0,

0 x > Am, Ar = 0,

where the functions L and R are particular decreasing shape functions from R+ to [0, 1] such that

L(0) = R(0) = 1 and L(x) = R(x) = 0,∀x ∈ R \ [0, 1], and 1I is the indicator function of a set I. Ã is

a triangular fuzzy number if L(z) = R(z) = 1− z, for 0 ≤ z ≤ 1.

The arithmetics considered in FLR are the natural extensions of the Minkowski sum and the

product by a positive scalar for intervals. In details, the sum of Ã and B̃ in FLR is the LR fuzzy

number Ã+ B̃ so that (Am, Al, Ar) + (Bm, Bl, Br) = (Am+Bm, Al+Bl, Ar +Br), and the product of

Ã ∈ FLR by a positive scalar γ is γ(Am, Al, Ar) = (γAm, γAl, γAr). Yang and Ko (1986) have defined

a distance between two LR fuzzy numbers Ã and B̃ as follows

D2
LR(Ã, B̃) = (Am −Bm)2 + [(Am − λAl)− (Bm − λBl)]2 + [(Am + ρAr)− (Bm + ρBr)]2,

where the parameters λ =
∫ 1
0 L
−1(ω)dω and ρ =

∫ 1
0 R

−1(ω)dω are related to the shape of the member-

ship function. In the triangular case, λ = ρ = 1
2 (see, for more details, Yang and Ko, 1986). In order

to embed the space FLR into R3 by preserving the metric a generalization of the Yang and Ko metric

has been derived in Ferraro et al. (2010). Namely, given a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R3, it is

D2
λρ(a, b) =(a1 − b1)2+((a1 − λa2)−(b1 − λb2))2+((a1 + ρa3)−(b1 + ρb3))

2,

where λ, ρ ∈ R+.

According to Puri & Ralescu’s sense, the concept of fuzzy random variable (FRV) can be in-

troduced. Let (Ω,A, P ) be a probability space, a mapping X̃ : Ω → FLR is an LR FRV if the

s-representation of X̃, (Xm, X l, Xr) : Ω → R × R+ × R+ is a random vector (Puri and Ralescu,

1986). The expectation of an LR FRV X̃ is the LR fuzzy set E(X̃) = (E(Xm), E(X l), E(Xr)) and

the variance of X̃ is defined as σ2
X̃

= var(X̃) = E[D2
LR(X̃, E(X̃))] (see, for more details, Ferraro et

al., 2010).

Model

Consider a random experiment in which an LR fuzzy response variable Ỹ and a real explanatory

variable X are observed on n statistical units, {Ỹi, Xi}i=1,...,n. Since Ỹ is characterized by three real-

valued random variables (Y m, Y l, Y r), the regression model proposed in Ferraro et al. (2010) concerns

this tuple. Due to some difficulties entailed by the non-negativity condition of Y l and Y r, the authors

proposed modelling the center, a transformation of the left spread and a transformation of the right

spread of the response through simple linear regressions (on the explanatory variable X). This can be

represented in the following way, letting g : (0,+∞) −→ R and h : (0,+∞) −→ R be invertible:
Y m = amX + bm + εm,

g(Y l) = alX + bl + εl,

h(Y r) = arX + br + εr,

(2)

where εm, εl and εr are real-valued random variables with E(εm|X) = E(εl|X) = E(εr|X) = 0. The

variance of the explanatory variable X will be denoted by σ2X and Σ will stand for the covariance

matrix of (εm, εl, εr), whose variances are strictly positive and finite. In the sequel we will assume the

existence of all population variances and covariances involved in the developments.
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In general, an LR fuzzy random variable Ỹ and a (real-valued) random variable X can also be

related by means of a nonparametric model. As in (2) we jointly consider three equations in which

the response variables are the center Y m and two transformations of the left and the right spreads

(g(Y l) and h(Y r)) of Ỹ , that is,
Y m = fm(X) + εm,

g(Y l) = fl(X) + εl,

h(Y r) = fr(X) + εr.

(3)

To estimate model (2), a least squares (LS) approach has been employed. It can be shown that

the LS estimators for the parameters of model (2) are strongly consistent and their expressions in

terms of the sample moments are as follows

âm =
σ̂XYm

σ̂2X
, âl =

σ̂Xg(Y l)

σ̂2X
, âr =

σ̂Xh(Y r)

σ̂2X
, b̂m = Y m−âmX, b̂l = g(Y l)−âlX, b̂r = h(Y r)−ârX.

Linear Combinations of variables

In this section some properties of the linear combinations are checked in order to use them in

constructing a linearity test.

Proposition 1 Consider k models f1, f2,...,fk. If there exist k linear combinations of these models

that are linear in X:

k∑
i=1

wjifi = ajX + bj , j = 1, ..., k,(4)

with
∑k

i=1wjifi, then there exist wj =
∑k

t=1 λtwtj, for j = 1, ..., k, such that
∑k

j=1wj = 1 and

k∑
j=1

wjfj = aX + b.(5)

Remark 1 If there exist k linear combinations of the models fj, ∀j = 1, ..., k, all the linear combi-

nations of the k models are linear. In particular, if wj = 1 and wt = 0 ∀t 6= j then fj is a linear

model.

Proposition 2 If fj, for j = 1, ..., k, is no linear then each linear combination of fj is almost sure

no liner.

Linearity test

The goal of this section is to test

H0 :


fm(X) = amX + bm
fl(X) = alX + bl
fr(X) = arX + br

(6)

against the alternative

H1 : fm(X), fl(X), fr(X) are smooth and non-linear functions.
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The linearity test proposed in Stute (1997) is based on the integrated mean. The statistic test for a

simple regression model, where the response is indicated by Y , is

TSn =

∫
t

(
n−1/2

n∑
i=1

1Xi≤t

[
Yi − Ŷi

])2

F (dt),

where Ŷi, for i = 1, .., n, are the values of the response predicted by the linear model.

There are two options:

1. To consider a linear combination of each TSn calculated on each regression model in (2)

2. To consider the test statistic TSn of a regression model in which the response is a linear combi-

nation of the three responses in (2), that is,

Y = wmYm + wlg(Y l) + wrh(Y r) = aX + b+ ε.

Bootstrap approach

In this context we use a residual-based bootstrap approach. In order to achieve the correctness of

the bootstrap test it is necessary to re-sample both the estimated residuals as well as the explanatory

variable independently each other (as the conditional distribution of the residuals is considered to be

independent of X). This leads to a quite interesting combination for the bootstrap procedure: as the

estimated residuals are related with the original ones εm, εl, εr and the explanatory variable X, then

the vector (X, εm, εl, εr) is indirectly jointly re-sampled independently and an additional X has to be

re-sampled independently of this vector.

In general, we consider the residuals

ε̂mi = Y m
i − âmXi − b̂m,

ε̂li = g(Y l
i )− âlXi − b̂l,

ε̂ri = h(Y r
i )− ârXi − b̂r.

We draw a bootstrap sample of the form{(
Xi, Y

∗
1i = âmX

0
i + b̂m + ε̂∗mi, Y

∗
2i = âlX

0
i + b̂l + ε̂∗li, Y

∗
3i = ârX

0
i + b̂r + ε̂∗ri

)}
i=1,...,n

.

In details, {(ε̂∗mi, ε̂∗li, ε̂∗ri)}i=1,...,n is an i.i.d. sample from the empirical distribution function of the

residuals (see, for more details, Efron & Tibshirani, 1993), that is, it is constructed on the basis of

{(X∗i , ε∗mi, ε∗li, ε∗ri)}i=1,...,n, sampled from F̂n,X,εm,εl,εr , and
{

(X0
i )
}
i=1,...,n

is an i.i.d sample from the

empirical distribution function F̂n,X,c = F̂n,X +A, with A→ 0 as n→∞. The bootstrap statistic is

TSn
∗

= αm

∫
t

(
n−1/2

n∑
i=1

1X0
i ≤t

[
Y ∗1i − Ŷ ∗1i

])2

F (dt) + αl

∫
t

(
n−1/2

n∑
i=1

1X0
i ≤t

[
Y ∗2i − Ŷ ∗2i

])2

F (dt)

+ αr

∫
t

(
n−1/2

n∑
i=1

1X0
i ≤t

[
Y ∗3i − Ŷ ∗3i

])2

F (dt),

where Ŷ ∗1i = â∗mX
0
i + b̂∗m, Ŷ ∗2i = â∗lX

0
i + b̂∗l and Ŷ ∗3i = â∗rX

0
i + b̂∗r , for i = 1, ..., n.
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In order to prove the consistency of the residual approach it is necessary to prove that the

residual-based bootstrap test statistic has the same asymptotic distribution TS∞ of

TSn = αm

∫
t

(
n−1/2

n∑
i=1

1Xi≤t

[
Y m
i − Ŷ m

i

])2

F (dt) + αl

∫
t

(
n−1/2

n∑
i=1

1Xi≤t

[
g(Y l

i )− ĝ(Y l
i )
])2

F (dt)

+ αr

∫
t

(
n−1/2

n∑
i=1

1Xi≤t

[
h(Y r

i )− ĥ(Y r
i )
])2

F (dt).

under the null hypothesis of linearity.

Proposition 3 Under the assumptions of model (2) and the hypothesis of linearity, if E(X4) < ∞,

E(ε4m) <∞, E(ε4l ) <∞, E(ε4r) <∞, as n→∞, the asymptotic distribution of the bootstrap statistic

T ∗n is almost surely TS∞.

The application of the bootstrap test based on Proposition 3 is presented in the following algo-

rithm.

Bootstrap Algorithm

Step 1: Compute the values âm, âl, âr, b̂m, b̂l and b̂r.

Step 2: Compute the residuals ε̂mi, ε̂li and ε̂ri.

Step 3: Generate a bootstrap sample of the form{(
Xi, Y

∗
1i = âmX

0
i + b̂m + ε̂∗1i, Y

∗
2i = âlX

0
i + b̂l + ε̂∗2i, Y

∗
3i = ârX

0
i + b̂r + ε̂∗3i

)}
i=1,...,n

,

and compute the value of the bootstrap statistic TS∗n .

Step 4: Repeat Step 3 a large number B of times to get a set of B estimators, denoted by

{T ∗n1, ..., T ∗nB} .

Step 5: Approximate the bootstrap p-value as the proportion of values in {T ∗n1, ..., T ∗nB} being greater

than Tn.

Simulation studies and concluding remarks

In order to illustrate the empirical significance of the bootstrap test we have used a simulation

study. We have considered B = 1000 replications of the bootstrap test and 10000 iterations of the

test at three different nominal significance levels α = .01, α = .05, α = .1 for different sample sizes n,

from 30 to 200. It results that even for small sample sizes the empirical percentages of rejection are

quite close to the nominal ones.

We have analyzed the power of the proposed two tests: the linear combination of the Stute’s

type tests (LCS) and the Stute’s type test of the linear combination of responses (SLC). We have

considered a population constructed as follows

• Ym = 3X + 5 + cmX
2 + εm,

• Y2 = g(Yl) = 1.5X + 3.4 + clX
2 + εl,
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• Y3 = h(Yr) = 2X + 4.2 + crX
2 + εr,

where X has been drawn as U(−2, 2) and εm, εl, εr as N(0, 1). In this case cm, cl and cr represent

the influence of the quadratic component, X2, on the responses. As the values of the parameters

cm, cl and cr get large the models tend to the alternative hypothesis so the percentages of rejection

approximate the power of the test. When cm = cl = cr = 0 the quadratic component for the three

models is null, hence it represents the hypothesis of linearity.

The percentage of times that H0 is rejected for increasing values of cm tends to 100, that is,

the power tends to 1. This is more evident when we consider two parameters, for example cm and cl,

getting large.

The test statistic based on a linear combination of TSn have higher power than the other test.

This is due to the loss of information in considering a linear combination of the responses.
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