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Abstract

In order to compute the log-likelihood for high dimensional spatial models, it is necessary to com-

pute the determinant of the large, sparse, symmetric positive definite precision matrix. Traditional

methods for evaluating the log-likelihood for very large models may fail due to the massive memory

requirements. We present a novel approach for evaluating such likelihoods when the matrix-vector

product, Qv, with the matrix of interest is fast to compute. In this approach we utilise matrix

functions, Krylov subspaces, and probing vectors to construct an iterative method for computing the

log-likelihood.

Introduction

In computational and, in particular, spatial statistics, increasing possibilities for observing large

amounts of data leaves the statistician in want of computational techniques capable of extracting useful

information from such data. Large data sets arise in many applications, such as modelling seismic

data acquisition (Buland and Omre (2003)); analysing satellite data for ozone intensity, temperature

and cloud formations(McPeters et al. (1996)); or constructing global climate models (Lindgren et al.

(2011)). Most models in spatial statistics are based around multivariate Gaussian distributions, which

has probability density function

p(x) = (2π)−k/2 det(Q)1/2 exp

(

−
1

2
(x− µ)TQ(x− µ)

)

where the precision matrix Q is the inverse of the covariance matrix. In this paper, we assume that

the precision matrix is sparse, which essentially enforces a Markov property on the Gaussian random

field. These models have better computational properties than those based on the covariance, and

there are modelling reasons to prefer using Q directly (Lindgren et al. (2011)). We note that Rue

and Tjelmeland (2002) showed that it is possible to approximate general Gaussian random fields by

Gaussian Markov random fields (GMRFs), that is Gaussian random vectors with sparse precision

matrices.

Throughout this paper, we will consider the common Gauss-linear model, in which our data is

a noisy observation of a linear transformation of a true random field, that is

y = A(θ)x+ ǫ1,(1)

where the matrix A(θ) models the observation of the true underlying field x, known as the ‘forward

model’, while ǫ ∼ N (0,Q−1
1 ) is the observation noise. In order to complete the model, we require
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a prior distribution on x, which we take to be Gaussian with mean µ and precision matrix Qx(η),

and appropriate hyperpriors are given for the mean µ, the hyperparameters in the prior η and the

hyperparameters in the forward model θ.

Given a set of data, we wish to infer η,θ and x. The ways in which this is done can vary, but

in the end, several determinant evaluations are needed. One way to do this is to alternately estimate

x and η,θ using the distributions p(x|y,η,θ) and p(η,θ|x,y), updating each consecutively. That is

1. Find argmaxx p(x|y,η,θ)

2. Find argmaxη,θ p(η,θ|x,y)

3. Repeat until convergence.

In a Gauss-linear model, the first step involves a linear solve, while the second is an optimisation over

the space in which η,θ reside. The distribution is

p(η,θ|x,y) ∝ p(y|x,η,θ)p(η,θ|x)

= p(y|x,θ)p(x|η)p(η)p(θ)(2)

The log of the last line in (2) gives the objective function for the hyper-parameters in this case:

Φ(η,θ) = − log p(y|x,θ)p(x|η)p(η)p(θ)(3)

We also have that p(y|x,θ)p(x|η) as a function of x is N (µp,Qp), whereQp = Qx(η)+A(θ)TQ1A(θ)

and µp = Q−1
p (Qxµ+ATQ1y). The separated expression, p(y|x,θ)p(x|η) in Φ, is usually preferable,

but this is problem dependent.

Expanding (3), we get

Φ(η,θ) =C − log(
1

2
det(Q1)) +

1

2
(y −A(θ)x)TQ1(y −A(θ)x)−

log(
1

2
det(Qx(η))) + (x− µ)TQx(x− µ)− log p(η)− log p(θ).(4)

In this expression, the only term which is difficult to evaluate is log det(Qx(η)), and it is needed for es-

timating the hyper-parameters, both for point estimates and for Gaussian- or Laplace-approximations

of the hyper-parameters (see Carlin and Louis (2000) for details on such approximations). It is this

evaluation and its use in optimisation we address in this article.

Determinant evaluations

The most common way to compute the log-determinant of a sparse precision or covariance

matrix is to 1) reorder Q to optimise for Cholesky factorisation, 2) perform a Cholesky factorisation

of the reordered matrix Q = LLT , 3) extract the diagonal entries of l = diag(L) and 4) set the

log-determinant as log detQ =
∑n

j=1 2 log(lj) (this comes from the identity detQ = detL detLT =

(detL)2). The algorithm takes very few lines to program, given a good sparse matrix sorting routine,

such as METIS (Karypis and Kumar (1999)) and a fast sparse Cholesky factoring implementation,

such as CHOLMOD (Davis and Hager (1999),Chen et al. (2008)). Problems occur, however, when

there are massive amounts of fill-in in the Cholesky factorisation even after resorting the matrix in

question. For a Gaussian Markov random field the dimensionality of the underlying parameter space

affect the storage cost for computing the Cholesky factorisation. In R
1 the cost is O(n), in R

2, O(n3/2)

in R
3, O(n2) (Rue and Held (2005)).
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Alternative approximations

The starting point for an alternative, less memory intensive procedure for computing the log-determinant

comes from the identity

log detQ = tr logQ(5)

In the symmetric positive definite case, this identity is proved noting that detQ =
∏n

i=1 λi where

{λi} are the eigenvalues of Q and that logQ = V log(Λ)V T with Λ = diag(λ) and V contains

the eigenvectors of Q. Furthermore, tr (V log(Λ)V T ) = tr (V V T logΛ) = tr logΛ, which gives the

identity.

How can this be useful in computation, is the next question. A trivial observation shows that

tr logQ =

n
∑

j=1

eTj log(Q)ej

where ej = (0, . . . , 1, . . . , 0) where the one is in position j. While it is cumbersome to carry out this

computation, it is the basis for stochastic estimators of the log-determinant. Such estimators have

been studied for the trace of a matrix, the trace of the inverse of a matrix and our case, the trace

of the logarithm of a matrix. Details on this can be found in Hutchinson (1989) and Bai and Golub

(1997). The Hutchinson stochastic estimator is described as follows: 1) Let vj, j = 1, . . . , s be vectors

with entries P (vk = 1) = 1/2, P (vk = −1) = 1/2 independently. 2) Let

tr logQ ≈
1

s

s
∑

j=1

vT
j log(Q)vj .(6)

As this is a Monte Carlo method, it is possible to compute confidence regions for the estimators, using

either Monte Carlo techniques or the Hoeffding inequality (Bai and Golub (1997)). The Hutchinson

estimator was formulated for approximating trQ−1 in which case, we replace the logQ in (6) with

Q−1.

The Hutchinson estimator requires a lot of random vectors vj to be sufficiently accurate for optimi-

sation. The memory requirements are low, but we may have to wait an eternity for one determinant

approximation. The question, then, can we choose the vjs in a clever way, so that we require far fewer

vectors?

In recent publications, Bekas et al. (2007) and Tang and Saad (2010) explored the use of probing

vectors for extracting the diagonal of a matrix or its inverse. In the first of these the diagonal of a

sparse matrix is extracted, and it is relatively straightforward under mild assumptions to extract the

diagonal. The second relies on approximate sparsity of the inverse, where the approximate sparsity

pattern of Q−1 is determined by a power of the original matrix, i.e. Qp. Assuming such a sparsity

structure, it is possible to compute the probing vectors {vj}
s
j=1 by a neighbour colouring of the graph

induced by Qp (see e.g. Culberson (1992) for a survey on the greedy graph colouring algorithms). A

heuristic suggested in Tang and Saad (2010) to find the power, p in Qp is to solve Qx = ej and find

p = min{d(l, j)||xl | < ǫ} where d gives the graph distance. In our case, we may compute log(Q)ej
and use the same heuristic. A nice feature is that the probing vectors need not be stored, but may

be computed cheaply on the fly. If we pre-compute them, they are sparse, and does not need much

storage. Since what we need for each probing vector is vT
j log(Q)vj , we observe that the computation

is highly parallel with low communication costs. Each node gets one probing vector, and computes

vT
j log(Q)vj and sends back the result. In essence, this leads to linear speedup with the amount of

processors available with proportionality close to unity.
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Next, we need to consider the evaluation of log(Q)vj. Since the matrices we consider have real positive

spectrum, it is possible to evaluate log(Q)vj through Cauchy’s integral formula,

log(Q)vj =

∮

Γ
log(x)(zI −Q)−1vjdz,

where Γ is a suitable curve enclosing the spectrum of Q and avoiding branch cuts of the logarithm.

Direct quadrature over such curves can be terribly inefficient, but through clever conformal mappings,

Hale et al. (2008) developed midpoint quadrature rules that converge rapidly for increasing number

of quadrature points at the cost of needing estimates for the extremal eigenvalues of Q. In fact,

‖ logQ−fN (Q)‖ = O(e−2πN/(log(λmax/λmin)+6)) with fN as below. This essentially gives us the rational

approximation

log(Q)vj ≈ fN(Q)vj =
N
∑

l=1

αl(Q− σlI)
−1vj, αl, σl ∈ C.(7)

In effect, we need to solve a family of shifted linear systems to approximate log(Q)vj. How we

compute fN (Q)vj is problem dependent, but in high dimensions, we usually have to rely on iter-

ative methods, such as Krylov methods. A Krylov subspace, Kk(Q,v) is defined by Kk(Q,v) =

span{v,Qv,Q2v, . . . ,Qkv} and a thorough introduction to the use and theory of Krylov methods

can be found in Saad (2003). Which Krylov method we use is highly dependent on the quality and

performance potential preconditioners for the matrix Q.

While the Krylov method of choice is problem dependent, there are ones that are particularily well

suited to compute the approximation in (7). These methods are based on the fact that Kk(Q,v) =

Kk(Q−σlI,v) and after some simple algebra, we obtain the coefficients for the shifted systems without

computing new matrix-vector products, see Jegerlehner (1996) and Frommer (2003) for details. We

have employed the method CG-M in Jegerlehner (1996) our computations. One possible difficulty in

employing the method is that we have complex shifts - this is remedied by using a variant, Conjugate

Orthogonal CG-M (COCG-M), which entails using the conjugate symmetric form (x,y) = xTy instead

of the usual inner product (x,y) = xTy in the Krylov iterations. See van der Vorst and Melissen

(1990) for a description of the COCG method. In practice, little complex arithmetic is needed, since

the complex, shifted coefficients are computed from the real ones obtained by the CG method used to

solve Qx = y.

Examples

In this section we explore how optimisation fares under different conditions. For doing this, we

assume essentially the simplest possible model, but we plan use the outlined approach on a seismic case

in the future. The model we assume is the SPDE τ(κ−△)u = W, in 2D, which we observe directly.

We will explore how optimisation works (on τ, κ) for different κs and different distance colouring of

the graph. Note that the number of colours needed is essentially independent of the granularity of

the discretisation: a fine grid yields approximatelly the same number of colours as a coarse grid. The

initial suspicion is that for small κs, corresponding to long range will be harder to optimise in the

following sense: we need more Krylov iterations for the COCG-M routine to converge and we need

a larger distance colouring to cover the increasing range, resulting in more probing vectors. We use

a modified Newton method for optimisation and compare using the exact determinant to using the

approximation outlined above. For the COCG-M method, we use a relative tolerance of 10−3 for

computing log(Q)vj. Note that a prior on the parameters will stabilise the results as usual. The

results are given in Table 1.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS031) p.4583



Table 1: Optimisation of (κ, τ) for different distance colourings
Exact 2-dist 4-dist 6-dist 8-dist 10-dist

κ = 1 (0.927, 1.015) (1.06, 0.98) (0.933, 1.013) (0.927, 1.015) . . . . . .

κ = 0.5 (0.455, 1.010) (0.605, 0.961) (0.471, 1.005) (0.457, 1.009) (0.455, 1.010) . . .

κ = 0.1 (0.0842, 1.003) (0.208, 0.940) (0.122, 0.984) (0.0983, 0.996) (0.0891, 1.000) (0.0859, 1.002)

κ = 0.05 (0.0398, 1.001) (0.138, 0.941) (0.0762, 0.980) (0.0567, 0.992) (0.0475, 0.997) (0.0434, 0.999)

κ = 0.01 (0.00644, 0.998) (0.0565, 0.947) (0.0292, 0.978) (0.197, 0.987) (0.0143, 0.992) (0.0117, 0.994)

In Table 1, . . . indicates that the optimisation yields the same as the previous entry. We see

that as we increase the graph neighbourhood in our colourings, we get results closer and closer to that

of using the exact determinant. We also see that the estimates are monotone: κ decreases with larger

distance colourings and τ increases. Lastly, we see that some of the estimates are better when using

the approximation. This should not necessarily be taken as a good sign, as it may only be a result of

approximation errors.

As increasing k in k-distance colourings yields better and better approximations, one could be

lead to using a ”large” k in the entire optimisation, whatever method one uses to determine k. Our

results indicate, however, that we only need very good approximations in the last iterations of the

optimisation procedure. In effect, we may use 2-distance colourings in the beginning, and go to 5-

or larger -distance colourings in the last steps. Computing the colourings is cheap and one colouring

only requires the storage of one vector, so we may store a couple of different colourings and use them

as required in the optimisation procedure.

Lastly, we present an example that cannot be done using black-box Cholesky factorisations.

Namely, a 3-D version of the model above with κ = 0.5 and 2 million discretisation points. We use

a 1-distance colouring for the first iterations and increase to 2- and 6-distance colouring in the last

iterations. This will give us temporary k-distance estimates which we also give. The estimates, pro-

gressively from 1-, 2 and 6-distance colouring were (7.627, 0.382), (1.401, 0.801), and (0.561, 0.988).

It took 24 hours to complete the optimisation. From this we conclude - the method is slow, but it

can be used for parameter estimation in high-dimensional problems where other alternatives are im-

possible due to memory limitations. We must, however, be careful so that we have enough colours to

capture the essentials of the determinant. The estimated memory use for using Cholesky factorisation

in the determinant evaluations is 155 Gb with METIS sorting of the graph and much higher without.

Few computing servers have this amount of memory on a node. The memory consumption for the

approximation was 3 Gb at maximum, and even this may be lowered quite a lot with some clever

memory management. In a computing cluster, the time for computing this optimisation would have

been much lower due to linear speedup vs. number of nodes.

We have tried the approximation for different types of matrices, and what we found is that

the examples above are among the toughest to do determinant approximations on. Since we can do

reasonable approximations for this class, we expect that these likelihood evaluations will work for a

large class of precision matrices in use in statistics.

Discussion

We have showed that the determinant approximations discussed shows promise for likelihood

evaluations in models where we cannot perform Cholesky factorisations or Kronecker decompositions

of the precision matrices. This may prove useful in high dimensional models where approximate

likelihoods are not sufficient for accurate inference. It remains to test the approximations on a real-

world dataset.
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