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Introduction 

In many fields, multivariate analyses are widely used to describe and summarize large data sets (many 
variables and/or individuals) by removing any redundancy in the data. Principal Component Analysis is to 
reduce the dimensionality of a data set that has a number of correlated variables and analyze complex 
construction between correlated variables. This method is achieved by linearizing and transforming to a new 
set of variables, which is principal component, which are uncorrelated and sorted in descending order. The 
first few retain most of the variation present in all of the original variables.  

One crucial step of PCA concerns the choice of the number of axes to be retained for interpretation and 
subsequent analyses. This decision is often made according to practical considerations (e.g., two axes 
retained because only two dimensions can be represented on a sheet of paper) and not statistical ones. The 
consequences of this choice are important: if the number of axes is not correctly estimated, one can introduce 
noise (overestimation) or loss of information (underestimation) in the analysis. A number of approaches to 
estimate the dimensionality of a data table (i.e., number of axes) have been proposed and evaluated in the 
literature (e.g., Jackson, 1993; Peres-Neto et al., 2005). Jolliffe (2002, pp. 112–132) reviews the most 
frequently used approaches that how many principal components should be retained and distinguishes three 
types of rules.  

Classical methods that are choosing of the number of principal component are using a ‘scree plot ‘or 
eigenvectors.(e.g., if cumulative rates of 3 eigenvectors are more than 80%, then the number of principal 
component is 3.) One of types corresponds to methods that do not require distributional assumptions. 
S.Dray(2008) focused on the type of method and proposed a new approach to estimate the dimensionality of 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS070) p.6853



a data set based of the link between PCA and the approximation of a matrix by another of lower rank (Eckart 
andYoung, 1936) using singular value decomposition (SVD, Good, 1969). In this paper, we will compare 
methods suggested by S.dray(2008) and proposed by us. 
 

 Modified RV 

If sample size is decreasing, then RV coefficient would become high. So RV is sensitive for sample 
size. Also increasing the number of variable makes RV coefficient to be high. Because of these problems, 
especially in high dimensionality, A. K. Smilde et al (2009) suggested modified RV coefficient. Let X (I × J1) 
and Y (I × J2) be two matrices corresponding to two sets of observation made on the same I individuals. The 
RV coefficient can be approximated as 

 

𝑅𝑉 𝑋, 𝑌 ≈  
(𝐽1𝐽2)

 𝐽1
2 + 2𝐽1 +  𝐼 − 1 𝐽1 

1/2(𝐽2
2 + 2𝐽2 +  𝐼 − 1 𝐽2)1/2

. 

 
From the above formula, it can be seen that the value of RV coefficient for random data matrices 

depends on I: for small I, the RV coefficient is close to 1, whereas, as I increases the denominator increases 
and the value approaches zero. In the other word, the accuracy of these approximations depends on I. 

If these diagonal elements are ignored or, equivalently, set to zero, then the problem will disappear. So 
we use  XX ′ = [ XX′ − daig(XX′)]  instead of using XX′  and modified-RV is 

 

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑉 𝑋, 𝑌 ′ =  
𝑡𝑟(𝑋𝑋 ′𝑌𝑌 ′)

 𝑡𝑟 𝑋𝑋 ′𝑋𝑋 ′ 𝑡𝑟(𝑌𝑌 ′𝑌𝑌 ′)

     . 

Results 

 

 

<p-values of RVDIM and Modified RVDIM in Matrix 1, 2> 

 
Original RVDIM and modified RVDIM show similar results. Even using modified RVDIM is more 

accurate outcome. The details will be shown in the presentation. 
  

Conclusion 

We want to compare p-values that one of these is calculated to use standardized RV-coefficient 
suggested by Korth and Tucker (1976) and another is calculated by permutation procedure (e.g. (number of 
random values equal to or larger than the observed +1)/ (repeat time)). However standardized RVDIM is so 
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large that we can’t compare two p-values. And using of covariance matrices is elicited different results with 
original RVDIM. As a result, choosing of the number of principal component computed by covariance 
matrices doesn’t apply. Values of modified RVDIM that is improving disadvantages of RVDIM are similar to 
original RV-coefficient‘s values and the results of modified are also nearly same. 
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