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1 Introduction

Probabilistic modeling for dimension reduction is a central research area in statistics, data mining, pat-
tern recognition and machine learning. Compared with non-probabilistic counterparts, probabilistic
models enables different sources of uncertainty inherent in the data to be well studied by means of prob-
ability theory. Principal component analysis (PCA) (Jolliffe, 2002) is one of most popular techniques
for dimension reduction. Due to the non-probabilistic nature of PCA, Moghaddam and Pentland
(1997) formulates PCA in a probabilistic framework and Tipping and Bishop (1999) derives the prob-
abilistic PCA (PPCA) from the classical linear latent variable model. PPCA is an important devel-
opment of PCA since it inherits all the advantages as a probabilistic model and includes PCA as a
special case.

However, PPCA is simply formulated for 1D data (in which observations are in vector form).
To apply PPCA for 2D data (in which observations are in matrix form), one possible solution is
applying PPCA to vectorized data. However, this might not obtain the result as expected because
the vectorization breaks the natural matrix structure, which may incur loss of the potentially more
compact or useful representation (Ye et al., 2004). Moreover, for 2D data such as images, the resulting
1D data (typically, over tens of thousands) by vectorization is easily trapped into the so-called curse
of dimensionality which could degenerate the performance of PPCA (Xie et al., 2008).

In recent years, several novel tools have been proposed to perform dimension reduction using
2D data directly. For example, 2DPCA (Yang et al., 2004), generalized low rank approximation of
matrices (GLRAM) (Ye, 2005), etc. Later, to attain the similar advantages as PPCA enjoys over
PCA, a probabilistic formulation for GLRAM called probabilistic second-order PCA (PSOPCA) has
been proposed (Yu et al., 2008; Xie et al., 2008). However, unlike the relationship between PPCA
and PCA (Tipping and Bishop, 1999), the theoretical relationship between PSOPCA and GLRAM
has not been full established yet.

In this paper, we propose a novel probabilistic PCA model for 2D data (2DPPCA) to address
these problems. Different from PSOPCA, which is based on minimum-error formulation, 2DPPCA is
a development of PPCA for 2D data based on maximum-variance formulation. Due to their different
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formulations, it is expected that the strength of PSOPCA depends on Euclidean distance while the
strength of 2DPPCA relies on Mahalanobis distance. The remainder of the paper is organized as
follows. Sec. 2 briefly reviews some related works. Sec. 3 proposes 2DPPCA model. Sec. 4 gives
some empirical studies to compare 2DPPCA and some related competitors. Sec. 5 closes the paper
with a conclusion.

2 Related works

2.1 PPCA

Let x be a d-dimensional data vector. PPCA model is defined as a restricted factor analysis model
(Tipping and Bishop, 1999)

(1)

{
x = Cz + µ + ε,

z ∼ Nq(0, I), ε ∼ Nd(0, σ2I),

where z is a q-dimensional whitened latent representations and assumed to be independent of ε, µ is
a d-dimensional mean vector, C is a d× q factor loadings matrix, and isotropic noise variance σ2 > 0,
I is an identity matrix whose dimension should be apparent from the context.

Under model (1), the probability distribution of x and the conditional probability distribution
of z given x follow multivariate normal: x ∼ Nd(µ,Σ) and z|x ∼ Nq

(
M−1C′(x− µ), σ2M−1

)
, where

Σ = CC′ + σ2I, M = C′C + σ2I.

2.2 Minimum-error formulation for bilinear dimension reduction

For 2D data compression, e.g. image or image patches, it is often expected that an observation
X ∈ Rdc×dr is projected onto a smaller one T ∈ Rqc×qr with qc < dc and qr < dr while reserving
the interesting information as much as possible. To this end, Ye (2005) proposed a method called
generalized low rank approximation of matrices (GLRAM). Let {Xn}N

n=1 be a set of 2D observations
and || · ||F denote the Frobenius norm. Assume the data has been centered w.r.t. X̄ given by X̄ =
1
N

∑N
n=1 Xn, i.e., Xn = Xn − X̄. GLRAM finds optimal transformation matrices Uc ∈ Rdc×qc(qc <

dc),Ur ∈ Rdr×qr(qr < dr), and projected low-dimensional representations Tn ∈ Rqc×qr , n = 1, . . . , N

to minimize MSE of all reconstructed observations given by 1
N

∑N
n=1 ||Xn −UcTnU′

r||2F , under the
condition that U′

cUc = I,U′
rUr = I. Note that 2DPCA can be viewed as a special case of GLRAM.

2.3 Probabilistic extensions of GLRAM

Recently, several works attempt to formulate a probabilistic model for GLRAM to attain the similar
advantages PPCA enjoys over PCA, e.g. Yu et al. (2008); Xie et al. (2008). These works formulate
the same model (called PSOPCA in Yu et al. (2008)) but use different algorithms:

(2)

{
X = CZR + W + ε,

Z ∼ Nqc,qr(0, I, I), ε ∼ Ndc,dr(0, σ2I, σ2I),

where Nqc,qr and Ndc,dr denote matrix-variate normals (Gupta and Nagar, 1999). This formulation
looks like PPCA (1), following from the classical linear latent variable model.
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3 2DPPCA model

In this section, we propose 2DPPCA model, which is formulated as a bilinear latent variable model.
We assume that the covariance matrix of 2D data X is separable, as

(3) cov(vec(X)) = Σr ⊗Σc,

where Σr and Σc are row and column covariance matrices respectively. Actually, separable co-
variance models have been successfully used in many applications where the structure of the prob-
lem suggests such an assumption. Examples include spatial-temporal modeling for environmental
data (Mardia and Goodall, 1993), channel modeling for multiple-input multiple-out communications
(Werner and Jansson, 2009), signal modeling of MEG/EEG data (de Munck et al., 2002), etc.

For the aim of dimension reduction, we follow the idea of classical factor analysis model to assign
factor structures on Σc and Σr, respectively. In this paper, factor structures with isotropic noises are
studied, i.e.,

(4) Σc = CC′ + σ2
c I, Σr = RR′ + σ2

rI,

where C : dc × qc(qc < dc) and R : dr × qr(qr < dr). For simplicity, normal distribution is assumed.
All assumptions we make for 2DPPCA are summarized as follows.

(A1) Separable covariance matrix (3).

(A2) Normal distribution.

(A3) Factor structures with isotropic noises (4).

The resulting model under (A1-A3) is called 2DPPCA, which can be formulated as a bilinear latent
variable model as follows.

(5)





X = CZR′ + W + Cεr + εcR′ + ε,

Z ∼ Nqc,qr(0, I, I), εr ∼ Nqc,dr(0, I, σ2
rI),

εc ∼ Ndc,qr(0, σ2
c I, I), ε ∼ Ndc,dr(0, σ2

c I, σ
2
rI)

where latent matrix Z, column noise εc(dc × qr), row noise εr(qc × dr), and common noise ε(dc × dr)
are assumed to be independent of each other. C(dc × qc) and R(dr × qr) are column and row factor
loadings matrices, respectively. Noise variances σ2

c > 0 and σ2
r > 0.

2DPPCA (5) is different from PPCA (1) and PSOPCA (2). It implies a breakthrough from
conventional 1D probabilistic model to the 2D one. To understand model (5) better, it is helpful to
further introduce two latent matrices Yr(qc × dr),Yr

ε (dc × dr) to write model (5) in the form

(6)





X = CYr + W + Yr
ε ,

Yr = ZR′ + εr,

Yr
ε = εcR′ + ε.

(6) is a two-stage representation of 2DPPCA. In stage 1, X is projected onto Yr in column direction.
In stage 2, Yr and the residual Yr

ε are further projected onto Z and εc in row direction. Equivalently,
model (6) can be rewritten as a first projection in the row direction followed by one in the column
direction.
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It can be verified from (5) and (6) that all X,Yr, Yr
ε , Z|Yr, Y|X follow matrix-variate normal,

e.g.

(7) X ∼ N (W,Σc,Σr).

where Σc and Σr are given by (4). Details about this can be found in our technical report (Zhao et al.,
2011).

3.1 Maximum Likelihood Estimation of 2DPPCA

Given a set of observations X = {Xn}N
n=1, using the p.d.f. of X (7), we obtain that the global MLE

of W is obviously the sample mean of X given by X̄ = 1
N

∑N
n=1 Xn. Assume that the data has been

centered, i.e., Xn = Xn − X̄. The MLE of θ = (C, σ2
c ,R, σ2

r ) can be obtained by maximizing the log
likelihood of 2DPPCA model, apart from a constant, given by

L(θ|X ) = −1
2

∑N

n=1

{
dr ln |Σc|+ dc ln |Σr|+ tr

(
Σ−1

c XnΣ−1
r X′

n

)}
.(8)

Due to the bilinear nature of 2DPPCA: given (R, σ2
r ), the model is linear w.r.t. (C, σ2

c ) and vice versa,
it is natural to develop iterative procedures to maximize L in (8). A condition maximization (CM)
algorithm to maximize L in (8) (Meng and Rubin, 1993) could be developed. Interested readers are
referred to our technical report (Zhao et al., 2011) for details.

4 Experiments

In this section, we use real data to investigate the performance of 2DPPCA, GLRAM and PPCA in
dimension reduction for classification. For comparison, the performance of PCA is also included. We
use the following benchmark datasets:

• YALE1 contains 165 face images of 15 individuals. Each person has 11 images in different facial
expression or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-
light, sad, sleepy, surprised, and wink. The image size is 160×121. Some images of two randomly
chosen people are show in Fig. 1.

• PIX2 consists of the images in the folder ‘test-easy’, containing 300 face images of 30 individuals.
Each person has 10 images. We subsample the images to the size 100×100.

Figure 1: Images of two people in YALE.

For simplicity, the Nearest-Neighbors (NN) classifier based on the reduced features is employed for
classification. To measure the misclassification error rate, we randomly split each data set into two

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
2http://peipa.essex.ac.uk/ipa/pix/faces/manchester/.
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parts: one part for training and the other for test. The training part consists of randomly chosen
r = 6 or 8 images per individual with labels. We report the results from 10 replications.

Given an observed image X, the reduced features for PCA and GLRAM are U′vec(X)(U′U = I)
and U′

cXUr, respectively. For PPCA and 2DPPCA, the conditional expectations of latent represen-
tations are taken as the reduced features. Since the covariance matrices of latent representations are I,
classification in PPCA and 2DPPCA is actually based on Mahalanobis distance while classification in
PCA and GLRAM is based on Euclidean distance. For all these methods, all possible dimensionalities
of the reduced representation are tried and the best results are reported.

Tab. 1 shows the optimal averaged misclassification rates. The main observations include:

1. Mahalanobis distance vs. Euclidean distance. Mahalanobis distance-based methods 2DPPCA
and PPCA substantially perform better than Euclidean distance-based methods GLRAM and
PCA, respectively. The reveals the advantage of Mahalanobis distance over Euclidean distance
for classification.

2. 2DPPCA vs. PPCA. 2DPPCA is better than PPCA. This superiority of 2DPPCA should be
attributed to the utilization of underlying 2D data structure.

Table 1: The averaged lowest error rates shown as mean±std. by different methods. Bold face
indicates the best one.

Data Method r = 6 r = 8

YALE

2DPPCA 10.8±6.2 7.2±5.9
PPCA 12.6±8.1 9.8±8.4

GLRAM 17.0±9.7 15.2±11.9
PCA 17.5±10.0 16.4±11.8

PIX

2DPPCA 16.3±4.0 13.4±3.2
PPCA 19.8±4.6 15.4±4.2

GLRAM 17.1±4.3 13.7±3.7
PCA 19.6±4.3 15.9±3.7

5 Conclusion

To perform probabilistic dimension reduction for 2D data, we have proposed in this paper a bilinear
probabilistic model called 2DPPCA. The novelty is that 2DPPCA signals a breakthrough from classical
1D latent variable model to the 2D one. The model parameters of 2DPPCA could be estimated by
maximum likelihood method. Empirical studies with face recognition are investigated and the result
reveals the advantages of 2DPPCA.
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