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Introduction

The talk concerns segmentation procedure for mean-nonstationary time series. Nonstationarities can
arise in various ways our focus is on nonstationarity in the trend.
The considered problem is formulated in the framework of detecting changes in trending regression
models in which the regressors are generated by suitably smooth functions and the error terms can
be both independent or dependent. The proposed test procedures are related to likelihood ratio type
statistics and statistics based on partial sums of weighted residuals.
Limit behavior of the proposed test procedures both under no change and at least one change is
presented. The main theoretical results among others establish the extreme value distribution of these
statistics. This provides a simple approximation for the needed critical values. However it appears
that the convergence to the limit is rather slow therefore a suitable version of the circular bootstrap
is proposed and then applied.

Test statistics

We study the regression model

Yi = xT
i β + ei, i = 1 . . . , k∗,

= xT
i β + xT

i δ + ei, i = k∗ + 1 . . . , n,

where e1, . . . , en are random errors with zero mean, β, δ 6= 0 are p-dimensional parameters, k∗ is a
change point (structural break) and x1, . . . ,xn are p-dimensional design points (random or nonran-
dom).

The testing problem is formulated as follows:

H0 : k∗ = n versus H1 : k∗ < n,

i.e. no change versus there is a change at an unknown point k∗ < n.
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This is one of the basic formulation for testing no change versus there is a change in linear regression
models. Of course, there is also the problem to estimate the location of the change point k∗. There
are many papers and even books and survey papers on this problems, e.g., Csörgő and Horváth
(1997), Perron (2008). There is typically assumed that the design points xi, i = 1, . . . , n have neither
deterministic nor stochastic trends, mostly formulated as an assumption of either stationarity of {xj}j

(random design) or for large n

1
n

bntc∑

i=1

xix
T
i ≈ tC, t ∈ (0, 1)

for some positive definite matrix C (fixed design) .
Here we focus on situations where xi have a trend:

xi = h(i/n) = (h1(i/n), . . . , hp(i/n))T , i = 1, . . . , n,

where hj , j = 1, . . . , p, are smooth nonconstant functions. The same test statistics as in case of no
trend in regression can be used, however their limit behavior is different. We will show it on some
particular test procedures.
We will deal with two maxlikelihood type test statistics:

(1) Tn(η) = max
ηn≤k<n(1−η)

Tn = max
p≤k<n−p

{
ST

k C−1
k Cn(C0

k)
−1Sk

1
τ̂2
n

}
,

(2) Tn = max
p≤k<n−p

{
ST

k C−1
k Cn(C0

k)
−1Sk

1
τ̂2
n

}
,

where

Sk =
k∑

i=1

h(i/n)(Yi − hT (i/n)βn),

Ck =
k∑

i=1

h(i/n)hT (i/n), C0
k = Cn −Ck

and τ̂2
n is suitable standardization quantity. This is the form more convenient for calculations. Alter-

natively they can be expressed as

(3) Tn(η) = max
ηn≤k<n(1−η)

{(
β̂k − β̂

0

k)
T Σ̂

−1

k

(
β̂k − β̂

0

k

)}
,

(4) Tn = max
p<k<n−p)

{(
β̂k − β̂

0

k)
T Σ̂

−1

k

(
β̂k − β̂

0

k

)}
,

where 0 ≤ η < 1/2, β̂k and β̂
0

k are least squares estimators based on Y1, . . . , Yk and Yk+1, . . . , Yn,
respectively, and Σ̂

−1

k is the inverse matrix to a suitable chosen estimator of the variance matrix of
β̂k − β̂

0

k. Here the statistics Tn and Tn(η) are expressed in terms of differences of the least squares
estimator based on the first k and last n− k observations statistics, which give the message that they
can be sensitive w.r.t. changes in β.

The null hypothesis is rejected for large values of either Tn or Tn(η). Approximations of the critical
values can be find in either of the following way:
(i) using limit distribution of Tn and/or Tn(η) under H0,
(ii) by a proper version of resampling methods (bootstrap).
Theorems 1 and 2 below provide the desired result for (i), while suitable version of the bootstrap is
shortly discussed later.
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Note that the change point k∗ can be estimated as a the maximizer of
{

(β̂k − β̂
0

k)
T Σ̂

−1

k (β̂k − β̂
0

k)
}

w.r.t. k.

Asymptotic results

Here we assume:

• (A.1) The sequence (ei : i ≥ 1) satisfy E[ei] = 0, E[e2
i ] = σ2 > 0.

• (A.2) There are independent standard Brownian motions (W1,n(t) : t ≥ 0) and (W2,n(t) : t ≥ 0)
such that

(5) max
1≤k≤n/2

1
k1/ν

∣∣∣∣∣
k∑

i=1

ei − τW1,n(k)

∣∣∣∣∣ = OP (1) (n →∞)

and

(6) max
n/2<k<n

1
(n− k)1/ν

∣∣∣∣∣
n∑

i=k+1

ei − τW2,n(n− k)

∣∣∣∣∣ = OP (1) (n →∞)

with some ν > 2 and τ > 0.

• (A.3) The components of h(.) are continuous on [0, 1]. The matrices
∫ t
0 h(x)hT (x)dx and C(t) =∫ 1

t h(x)hT (x)dx are regular for all t ∈ (t0, 1− t0) for all t0 ∈ (0, 1/2).

• (A.4) There are p linearly independent p-dimensional vectors a01, . . . ,a0p and nonnegative 0 ≤
γ01 < . . . < γ0p such that

(7) lim sup
t→0+

1
tγ0p+1

∣∣∣h(t)−
p∑

`=1

a0`tγ0`

∣∣∣ < ∞.

• (A.5) There are p linearly independent p-dimensional vectors a11, . . . ,a1p and nonnegative 0 ≤
γ11 < . . . < γ1p such that

(8) lim sup
t→1−

1
tγ1p+1

∣∣∣h(t)−
p∑

`=1

a1`tγ1`

∣∣∣ < ∞.

We shortly discuss the assumptions. Assumptions (A.1), (A.2) concerns error terms. They cover
both independent observations (in the situation τ2 = σ2) as well as dependent ones covering a quite
spectrum of various time series. Assumptions (A.3)-(A.4) on design points cover a number of useful
situations. Here are two important cases:

Polynomial regression h(t) = (tγ1 , . . . , tγp)T , t ∈ [0, 1], 0 ≤ γ1 < . . . < γp

Harmonic regression h(t) = (cos(2πtω1), sin(2πtω1), . . . , cos(2πtωp), cos(2πtωp))T , t ∈ [0, 1], ω1, . . . , ωp

known.

Next we formulate main results for both test statistics under the null hypothesis H0.

Theorem 1 Let assumptions (A.1)- (A.3) be satisfied and let τ̂2
n →P τ2 as n →∞. Then, as n →∞,

Tn(η) →d sup
η<t<1−η

ST (t)C(t)C−1(1)C0(t)S(t), η ∈ (0, 1/2),
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where

S(t) =
∫ t

0
h(x)dB(x)−C(t)C−1(1)

∫ 1

0
h(x)dB(x), t ∈ [0, 1]

with {B(x), x ∈ [0, 1]} being a Brownian motion and C0(t) = C(1)−C(t), t ∈ [0, 1].

Theorem 2 Let assumptions (A.1)- (A.5) be satisfied and let, as n →∞,

τ̂2
n − τ2 = oP ((log log n)−1).

Then
lim

n→∞P (Tn ≤ t + bp(log n)) = exp{−2 exp{−t/2}}, t ∈ R1,

where
bp(y) = 2 log y + p log log y − 2 log(2p/2Γ(p/2)/p), y > 1.

Notice that both Tn(η) and Tn are asymptotically distribution free under H0. Tn(η) behaves asymp-
totically as a functional of a Gaussian process, while the limit distribution of Tn is an extreme value
type. Approximations for critical values for the test based on Tn can be easily calculated but the con-
vergence is very slow. Concerning approximations of critical values related to Tn(η) based on Theorem
1 the limit distributions depend on h and its explicit form is unknown therefore the limit distribution
has to be simulated.
There have been derived assertions concerning tests related to Tn(η), η ∈ (0, 1/2), under various
assumptions. The first papers work with stronger assumptions, see e.g., MacNeill (1978), Jandhyala
(1993) and Jandhyala and MacNeill (1989, 1997). These results were later extended to a more general
setups, e.g. Bishoff (1998), Kuang (1998), Hansen (2000), Hušková and Picek (2005).
Concerning test procedures based on Tn Albin and Jarušková (2003), Jarušková (1998, 1999) studied
limit behavior for independent observations and polynomial trend. Aue et al ( 2008,2009) extended
these results to dependent observations. Theorem 2 above covers all these results as particular cases.

The important issue is the choice of the estimator τ̂n of τ (see Assumption (A.2)). As soon as the
error terms e1, e2, . . . , en are independent identically distributed with zero mean and finite (2 + κ)th
moment with κ > 0) one can use

τ̂n =
1
n

n∑

j=1

(êj − en)2

with

êj = Yj − xT
j β̂n, en =

1
n

n∑

i=1

êi.

Usually this estimator has the desired asymptotic properties (formulated as an assumption in Theorem
1 and 2) and also in the finite sample situation it behaves reasonably well. This estimator can be
improved by adjusting to a possible change point.
In case of dependent e1, . . . , en the estimator with flat top kernel can be used:

τ̂2
n =

1
n

n∑

j=1

(êj − en)2 +
2
n

qn∑

j=1

wj

n−j∑

i=1

(êi − en)(êi+j − en)

where
wj = 1I{1 ≤ j ≤ qn/2}+ 2(1− j/qn)I{qn/2 < j ≤ qn}.

For properly chosen qn this estimator has also the desired asymptotic property assumed in Theorem
1 and 2 but simulation show that in a finite sample situation one needs larger sample sizes.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS013) p.4132



It can be shown that both type of test statistics lead to consistent tests under quite general classes of
alternatives.

At last we mention that very good approximations for critical values can be obtained by bootstrap.
Particularly, circular block bootstrap (see Politis (2003) and Politis and White (2004)) applied to the
residuals ê1, . . . , ên works both asymptotically and also simulation results give satisfactory results.

Further results together some applications will be presented during the talk.

Acknowledgement

The paper was partially supported by grant MSM 0021620839 and grant GACR 201/09/J006.

REFERENCES
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Aue, A., Horv áth, L., Hušková, M. (2009). Extreme value theory for stochastic integrals of Legendre polyno-
mials. Journal of Multivariate Analysis 100, 1029-1043.
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