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1. Introduction

In recent years, one-to-one marketing has attracted much attention among various marketing
disciplines(Peppers and Martha, 1993). The core principle of marketing is to establish and maintain
interaction between a company and its customers by knowing their characteristics and needs. To do
so, companies must collect data about customers’ behavior, such as their purchasing histories, and
then analyze and evaluate important features presented by the data. One-to-one marketing employs
several indices for evaluating customer data. For example, Abe (2005) proposed a behavioral model
to predict the probability that an individual customer will remain a loyal consumer.

This paper proposes a new method–the adjusted Gini index (AGI)–for using the Gini index,
proposed by Gini (1912), to evaluate customers’ purchasing interval. Simulation results demonstrate
that AGI is a reliable indicator for evaluating the regularity of a customer’s purchases.

2. Measuring the equivalence of purchase intervals

The definitions and notation used to measure purchasing equivalence are as follows. Let xij be
the jth purchase interval data of customer i. It is represented as

xij = ti, j+1 − ti, j (j = 1, . . . , ni − 1) ,

where ti, j is the dates of the jth purchase by customer i, and ni (≥ 3) is the number of purchases for
customer i.

We can measure the equivalence of purchase intervals for customer i by calculating the Gini
index GIi for the purchase interval data using

GIi = 1 − 2
ni−1∑
j=1

∫ j
ni−1

j−1
ni−1

fij (p) dp,

fij (p) =
xi, (j)

x̄i

(
p − j

ni − 1

)
+

∑j
k=1 xi, (k)

(ni − 1) x̄i

(
p ∈

[
j − 1
ni − 1

,
j

ni − 1

]
; j = 1, 2, . . . , ni − 1

)
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where xi, (j) are the order statistics of xij and

x̄i =
1

ni − 1

ni−1∑
j=1

xij .

The continuous function fi (p) (p ∈ [0, 1]) obtained by combining the linear function fij (p) for
(j = 1, 2, . . . , ni − 1) is the Lorenz curve.

GIi represents the uniformity of the purchase interval for a customer i. If GIi is closer to 0, the
customer tends to purchase at regular intervals; if it is closer to 1, the customer tends to purchase at
irregular intervals.

However, GIi poses a problem: its maximum value depends on the time elapsed between the
customer’s first and most recent purchase ti = ti, ni − ti, 1, and ni. The maximum GIi is the value
of Gini index when ni − 2 purchase interval data are 1 and the only one data is ti − (ni − 2). This
problem is caused by the feature of the purchase interval data, i.e., xij 6= 0.

Figure 1: Relationship between the maximum value of GIi and ti and ni
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The left panel of Figure 1 shows the relationship between ti and the maximum value of GIi

when ni = 10. The right panel shows the relationship between ni and the maximum value of GIi

when ti = 365. The graph implies that the maximum value of GIi depends on a customer i.
Therefore, GIi needs to be modified by the maximum value of the Gini index GImax (i), calcu-

lated as

GImax (i) = 1 − (ni − 2) (ni − 1) + ti
ti (ni − 1)

.

AGIi is defined as

AGIi =
GIi

GImax (i)
.

3. Time series of the equivalence

A problem in evaluating the equivalence of purchase intervals is that we cannot measure their
local equivalence by calculating the Gini index using all historical data. For example, if a customer
makes a purchase every day during the first month, AGIi calculated for that month is 1. However, if
the customer makes only one purchase during the second month, AGIi calculated for the two months
is 0. Although this is an extreme example, it indicates the need of calculating AGIi using data for
the appropriate time frame.
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In calculating local AGIi, we define the time frame which is shorter than the observing period,
and then we calculate AGIi using data in the time frame with moving the time frame between the
first and last time of the observing period. With this method, we can derive the time-series AGIi.

Purchase data between ts and tf were observed and F was selected as the time frame for
calculating AGIi; AGIi is calculated at ts + F, ts + F + 1, . . . , tf . Let T denote the endpoint of the
calculation period, let nT

i (≥ 3) denote the number of times customer i makes a purchase during the
period, and let JT

i =
{

`1, `2, . . . , `nt
i

}
denote the ordinal numbers regarding purchase in the time

frame.
We can then write AGIT

i , which is denotes AGIi at T as

AGIT
i =

GIT
i

GIT
max (i)

where

GIT
i = 1 − 2

nT
i −1∑
j=1

∫ j

nT
i

−1

j−1
nT

i
−1

fT
ij (p) dp GIT

max (i) = 1 −
(
nT

i − 2
)2 + tTi

tTi
(
nT

i − 1
)

fT
ij (p) =

xi, (`j)

x̄T
i

(
p − j

nT
i − 1

)
+

∑j
k=1 xi, (`k)(

nT
i − 1

)
x̄T

i

(
p ∈

[
j − 1

nT
i − 1

,
j

nT
i − 1

]
; j = 1, 2, . . . , nT

i − 1
)

.

Here, xi, (`j) are the order statistics of xi, `j

(
j = 1, 2, . . . , nT

i − 1
)

and x̄T
i is the mean of the purchase

interval during the time frame, given as

x̄T
i =

1
nT

i − 1

nT
i −1∑
j=1

xi, `j
.

4. Application 1

This section shows the validity of AGIi in measuring the equivalence of purchase intervals by
using simulation. We compare AGIi of regular purchase interval data with that of irregular data. If
AGIi derived from the former data is large and that derived from the latter data is small, it can be
concluded that AGIi is valid.

First, by assuming that regular and irregular purchase interval data follow a normal and an
exponential distribution, respectively, we generate the data by using normal and exponential random
number generations, respectively.

Then, we generate one set of random numbers, the sum of which is less than 365. That is, a
customer’s purchase is observed in the period of 365. If a negative number is generated by the normal
random number, the value is rejected. Second, we consider one set of random numbers to be the
purchase data of one customer and repeat the generation until the number of sets is 3000, rejecting
data sets that contain fewer than 10 entries. Finally, we calculate AGIi for each set and estimate its
kernel density.

This experimental design has four simulation patterns. The expected value and the variance are
different for both normal distribution and exponential distribution from which the random numbers
are generated. That is, they differ with respect to the length of the purchase interval. The parameter
values of the normal and exponential distributions are set such that the expected values of both are
40, 30, 20, and 10. The variance values of the normal distribution are set as (80/3)2, (20)2, (40/3)2,
and (20/3)2, respectively. (Variances of the exponential distribution are fixed when its expected values
are fixed.)
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Figure 2: Comparison of density estimates for AGIi

Figure 2 shows the result of the kernel density estimate for AGIi in the four simulation patterns.
From this graph, we observe that in any simulation pattern AGIi calculated from the exponentially-
distributed purchase interval is larger than that calculated from the normally-distributed interval.
This indicate that AGIi is small when a customer purchases at regular intervals and is large when
the customer purchases at irregular intervals. This result shows that AGIi is valid for measuring the
equivalence of purchase intervals.

4. Application 2

A simulation similar to that in Application 1 shows the validity of AGIT
i in measuring the

time-series equivalence of purchase intervals.
First, we obtain simulation data by random number generation as in Application 1. However,

in this simulation we create only 1000 sets of purchase interval data and establish the observed period
as 547. Then, we calculate AGIT

i with each set of purchase interval data. Here, we fix the value of F

as 7 times the mean of the purchase interval data in each set. Moreover, if fewer than five data points
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appear during the time frame, we do not calculate AGIT
i . In this manner, we produce 1000 sets of

AGIT
i compensating for the missing values.
Because we cannot observe all graphs for checking the validity of AGIT

i , we define Rτ
i as

Rτ
i =

∑tf
T=ts+F BT

i∑tf
T=ts+F AT

i

, where AT
i =

{
0

(
nT

i < 5
)

1
(
nT

i ≥ 5
) and BT

i =

{
0

(
AGIT

i > τ
)

1
(
AGIT

i ≤ τ
) ,

to count the number of times AGIT
i indicates that customer i purchases at regular intervals.∑tf

T=ts+F AT
i denotes the number of times AGIT

i can be calculated.
∑tf

T=ts+F BT
i denotes the number

of times the calculated AGIT
i is lower than τ (τ is optional). A customer’s purchases are considered

to be regular when AGIT
i is lower than τ . Rτ

i ranges from 0 to 1. If Rτ
i is closer to 0, it indicate

that customer i purchases at irregular intervals throughout the observed period. If Rτ
i is closer to 1,

it indicates that customer i purchases at regular intervals throughout the observed period.
We compare Rτ

i calculated using normally distributed random numbers with that calculated
using exponentially distributed random numbers in the four patterns in which the parameters of the
density functions differ. Here, we set τ = 0.3.

Figure 3: Comparison of the histogram of R0.3
i

The four upper graphs in Figure 3 show the histogram of R0.3
i for normally distributed data, and

the four lower graphs show the histogram of R0.3
i for exponentially distributed data. R0.3

i for normally
distributed data have disparate values, but most R0.3

i for exponentially distributed data have values
closer to 0. This indicates that AGIT

i of a customer who purchases at irregular intervals is small;
hence, it may be said that the customer purchases at irregular intervals during any period.

Figure 4 and 5 show examples of purchase timing data and AGIT
i . The broken lines represent

the timing of purchases and the solid lines represent AGIT
i . In Figure 4, purchase intervals where

R0.3
i = 1 are almost regular, and AGIT

i is small in any period for which it is calculated. In Figure 5,
purchase intervals where R0.3

i = 0 are irregular and AGIT
i is large. From the examples, we observe

that AGIT
i effectively represents the equivalence of purchase intervals.
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Figure 4: Example of purchase timing data and AGIT
i where R0.3

i = 1

Figure 5: Example of purchase timing data and AGIT
i where R0.3

i = 0

5. Conclusion and outlook

This paper has proposed method using the Gini index to evaluate the regularity with which
customers make purchases, and has confirmed its validity by simulation. The results show that the
equivalence of purchase interval can be measured using an adjusted Gini index AGIi and the time
series of the adjusted Gini index AGIT

i .
Using the measuring method, we can identify loyal customers by the regularity of their purchases

and implement appropriate marketing actions. Our future task is to discuss the marketing actions.
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