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1. Introduction

When real experimental data take interval values (representing, for instance, fluctuations or

variations of a magnitude along a given period of time), they are usually modeled by means of the

so-called interval-valued random variables, or random intervals.

The linear relationship between two random intervals can be formalized through an interval

arithmetic-based linear model with flexible and versatile properties. The LS estimation of this model

has been addressed in Blanco-Fernandez et al., 2011. The closed form LS estimators are found as the

solution of an optimization problem with constraints.

Once the estimation process of the linear model has been solved, the development of other in-

ferential studies about the model can be addressed. In the interval scenario exact parametric methods

are not feasible yet for inferential studies, since no realistic parametric models to describe the dis-

tribution of the random intervals have been shown to be widely applicable in practice. Inferential

studies for the linear model can be developed by means of asymptotic techniques, based on the study

of the limit distributions of the regression estimators (see, for instance, Gil et al., 2007). To improve

the results for finite sample sizes, bootstrap methods are widely considered (see, for instance, Colubi,

2009, Blanco-Fernandez et al., 2010).

In this work, a bootstrap algorithm for the construction of simultaneous confidence regions for

the regression function is proposed. The procedure is based on the classical method of paired bootstrap,

since both intervals in the model are considered as random elements (see Efron & Tibshirani, 1993).

The rest of the paper is organized as follows: in Section 2 some preliminary concepts in the

interval scenario are introduced. Then, the formalization and the LS estimation of the simple linear

model between random intervals is presented in Section 3. The construction of simultaneous confidence

regions for the regression function of the model is shown in Section 4, and a bootstrap algorithm for

the practical computation of those confidence regions is proposed. The empirical performance of the

suggested algorithm is illustrated in Section 5, by means of some simulation studies and its application

over a real-life example. Finally, Section 6 collects some conclusions and future directions.
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2. Preliminaries

Let (Kc(R),+, ·) be the space of nonempty compact intervals of R endowed with the semilinear

structure induced by the Minkowski addition and the product by a scalar, that is, A+B = {a+ b | a ∈
A , b ∈ B} and λA = {λa | a ∈ A} for all A,B ∈ Kc(R) and λ ∈ R. Given A,B ∈ Kc(R), if there

exists C ∈ Kc(R) so that A = B + C, then C is defined as the Hukuhara difference between A and

B, denoted by A −H B. Each interval A ∈ Kc(R) can be characterized by means of the real vector

(inf A, supA) ∈ R2 such that inf A ≤ supA. Equivalently, A can be parametrized through its mid-

point (or centre) midA and its spread (or radius) sprA, by means of the real vector (midA, sprA)

with sprA ≥ 0, where midA = (supA + inf A)/2 and sprA = (supA − inf A)/2. The notation

A = [inf A, supA] or A = [midA± sprA], respectively, will be considered in each case.

Several metrics can be defined on the space Kc(R). For least squares problems associated with

regression studies, an L2-type metric is suitable. A generalized L2-type distance between two intervals

A and B can be defined as

(1) dθ(A,B) =
√

(midA−midB)2 + θ(sprA− sprB)2

for an arbitrary θ > 0 (see Trutschnig et al., 2009). The constant θ allows us to choose the relative

importance given for the squared Euclidean distance between the spreads of the intervals (which can

be seen as a measure of the difference in imprecision of both intervals) with respect to the squared

Euclidean distance between the midpoints (which measures the difference in location or position in the

real line) of the intervals. In particular, d1/3 is often employed for applications, since it corresponds

to the Bertoluzza metric dW (see Bertoluzza et al., 1995), when W is the Lebesgue measure on [0, 1].

Given a probability space (Ω,A, P ), a mapping X : Ω→ Kc(R) is said to be an interval-valued

random set (or random interval), if it is A|Bdθ -measurable, Bdθ denoting the σ-field generated by the

topology induced by the metric dθ on Kc(R).

Let X : Ω → Kc(R) be a random interval such that E(|X|) < ∞ (with |X|(ω) = sup
{
|x|
∣∣x ∈

X(ω)
}

for all ω ∈ Ω), then, the expected value of X in Kudō-Aumann’s sense (see Aumann, 1965) is the

interval E(X) = [E(midX) ± E(sprX)]. The considered second-order moments for random intervals

are the usual (Fréchet) ones in metric spaces. Specifically, in terms of the mid and spread variables of

the random intervals X and Y the variance and the covariance can be written as σ2X = σ2midX +θσ2sprX
and σX,Y = σmidX,midX + θσsprX,sprX , respectively, whenever the corresponding real moments exist.

For {Xi, Yi}ni=1 a random sample obtained from (X,Y ), the sample moments can be defined in the

usual way, that is: X = (X1 + . . .+Xn)/n, σ̂2X = (
∑n

i=1 d
2
θ(Xi, X))/n = σ̂2midX + θ σ̂2sprX (analogously

for Y ) and σ̂X,Y = σ̂midX,midX + θ σ̂sprX,sprX .

3. A flexible linear regression model for random intervals

The formalization of the linear model for random intervals presented in Blanco-Fernández et al., 2011

is based on the canonical decomposition of the intervals. The notation A = [midA± sprA] can be split

into two terms depending on the midpoint and spread values of A as A = midA[1± 0] + sprA[0± 1].

This expression allows us to work separately with the mid and spr components of the interval, but

keeping the interval arithmetic.

Let X and Y be two random intervals with finite second-order moments, and spr X non-

degenerated (so X is not reduced to a real-valued random variable). Based on the canonical de-

composition, the linear model between X and Y is formalized as

(2) Y = αmidX[1± 0] + β sprX[0± 1] + γ[1± 0] + ε ,

where α and β are the regression coefficients, γ is an intercept term affecting the mid component of Y,

and ε is an interval-valued random error variable such that E(ε|X) = [−δ, δ] ∈ Kc(R) (so that δ ≥ 0).
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For simpler notation, if we define B = [γ − δ, γ + δ] ∈ Kc(R), the regression function associated with

the model (2) will be denoted by

(3) E(Y |X) = αXM + βXS +B,

where XM = midX[1 ± 0] and XS = sprX[0 ± 1]. Since the random interval XS verifies that

XS = −XS , it is possible to assume without loss of generality that β ≥ 0.

The LS estimation of the model (2) has been solved by means of a minimization problem over a

suitable feasible set assuring the existence of the residuals of the sample model. Given a random sample

{Xi, Yi}ni=1 from (X,Y ), the following analytic expressions for the estimators for the parameters α, β

and B of the regression function (3) are obtained:

(4) α̂ =
σ̂XM ,Y

σ̂2
XM

, β̂ = min

{
ŝ0,max

{
0,
σ̂XS ,Y

σ̂2
XS

}}
and B̂ = Y −H

(
α̂XM + β̂XS

)
,

where ŝ0 = min{sprYi/sprXi : sprXi 6= 0} (ŝ0 =∞ if sprXi = 0 for all i = 1, . . . , n).

4. Simultaneous confidence regions for the regression function

Let X,Y : Ω → Kc(R) be random intervals verifying a linear model (2). Thus, from (3) it is

obtained that E(Y |X = x) = αxM + βxS + B ∈ Kc(R), for each x ∈ Im(X). Given a desirable

confidence level 1− ρ, the aim is to develop (1− ρ)−simultaneous confidence regions (or, equivalently,

a (1 − ρ)−confidence band) for {E(Y |X = x) : x ∈ Im(X)}. As usual, the regions will be centered

around the corresponding estimate Ê(Y |X = x), and their radii will be computed in terms of the

metric dθ.

Let {Xi, Yi}ni=1 be a random sample obtained from (X,Y ), and let ρ ∈ (0, 1). For each x ∈
Im(X), the (1− ρ)−confidence region for E(Y |X = x) is defined as

(5) B
Ê(Y |X=x)

(δ̂x) =
{
A ∈ Kc(R) : dθ(A, Ê(Y |X = x)) ≤ δ̂x

}
,

where {δ̂x : x ∈ Im(X)} are computed by assuring the simultaneous coverage condition, that is:

P
(
E(Y |X = x) ∈ B

Ê(Y |X=x)
(δ̂x),∀x ∈ Im(X)

)
= 1− ρ .

Taking inspiration on the classical linear regression problems, the radii in (5) are defined by

means of the expression

δ̂x = K̂σε

√
σ̂2X + d2θ(x,X) ,

for a suitable constant K̂, for all x ∈ Im(X). From the simultaneous coverage condition, it can be

obtained:

1− ρ = P
(
E(Y |X = x) ∈ B

Ê(Y |X=x)
(δ̂x),∀x ∈ Im(X)

)
= P

(
dθ

(
E(Y |X = x), Ê(Y |X = x)

)
≤K̂σε

√
σ̂2X + d2θ(x,X),∀x

)

= P

 sup
x∈Im(X)

dθ
(
E(Y |X = x), Ê(Y |X = x)

)
σε

√
σ̂2X + d2θ(x,X)

≤ K̂


Thus, K̂ can be computed as the (1− ρ)−quantile of the distribution of the statistic

Ân = sup
x∈Im(X)

dθ
(
E(Y |X = x), Ê(Y |X = x)

)
σε

√
σ̂2X + d2θ(x,X)

.
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The exact distribution of Ân is unknown, since no parametric models for the random intervals

are defined. Moreover, the asymptotic distribution of Ân seems difficult to get. Alternatively, applying

a bootstrap procedure, the value of the constant K̂ can be approximated by the corresponding (1 −
ρ)−quantile of a bootstrap distribution of Ân.

In practice, the computation of K̂ can be done by means of the following bootstrap algorithm:

Algorithm:

Let {Xi, Yi}ni=1 be a random sample obtained from (X,Y ). Let ρ be a fixed significance level and

B ∈ N large enough.

P1. Compute the parameter estimates (α̂, β̂, B̂) and σ̂ε. Thus, Ê(Y |X = x) = α̂xM + β̂xS + B̂, x ∈
Im(X).

P2. Generate B bootstrap samples {X∗i , Y ∗i }ni=1 of size n, resampling with replacement from the

original sample {Xi, Yi}ni=1.

P3. For each iteration b = 1, . . . , B, compute the parameter estimates (α̂∗, β̂∗, B̂∗) from the corre-

sponding bootstrap sample. Thus, Ê∗(Y |X = x) = α̂∗xM + β̂∗xS + B̂∗, x ∈ Im(X). Compute

X∗, σ̂2X∗ , and the value of the bootstrap version of Ân:

Â∗(b)n = sup
x∈Im(X)

dθ
(
Ê(Y |X = x), Ê∗(Y |X = x)

)
σ̂ε

√
σ̂2X∗ + d2θ(x,X

∗)

P4. Approximate K̂ by the (1− ρ)−quantile of the empirical distribution {Â∗(b)n }Bb=1 .

5. Simulation studies and practical illustration

The empirical behaviour of the bootstrap algorithm can be shown by means of some simulation

studies. Let us define a theoretical situation for two random intervals X and Y associated by means

of a linear model (2). Two linear models with the structure of (2) will be investigated.

• Model M1: Let midX ∼ N(0, 1), sprX ∼ χ2
1, and the interval error term defined by midε ∼

N(0, 1) and sprε ∼ χ2
1, independent from the previous ones. Let Y be a random interval defined

by means of the linear model

(6) Y = XM +XS + ε .

• Model M2: Considering the same interval error ε from above, let X be in this case parametrized

by midX ∼ N(0, 1) and sprX = (midX)2. Interval Y is then defined as

(7) Y = (−2)XM + 3XS + ε .

In this situation, a certain degree of dependence between midX and sprX is allowed, so intervals

XM and XS in (7) are dependent.

The empirical coverage of the simultaneous confidence regions for the regression function of M1

and M2 is computed by simulating k = 10, 000 random samples from the corresponding model for

different sample sizes n and running the bootstrap algorithm for each sample. In each iteration of

the algorithm, a value of K̂ is computed, and the membership of the regression function to the corre-

sponding confidence region is checked. In Table 1 the simulation results for three nominal significance
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levels (100(1− ρ)% = 90, 95, 99%) are presented. In all the cases, the coverage rates approximate the

nominal significance level as the sample size increases, which shows the empirical correctness of the

bootstrap procedure.

Table 1: Empirical confidence level of the bootstrap simultaneous confidence regions

Model n \ 100(1− ρ) 90 95 99

10 91.58 96.49 99.66

30 90.48 95.80 99.21

M1 50 90.47 95.53 99.17

100 90.01 95.08 98.87

300 90.07 94.96 98.94

10 93.39 97.58 99.79

30 91.59 96.55 99.57

M2 50 90.43 95.53 99.21

100 90.11 95.41 99.14

300 90.09 95.07 99.01

The practical application of the algorithm is illustrated over a real-life data set. Data in Table

2 correspond to the fluctuations over a day of the systolic and diastolic blood pressure of 59 patients

who were hospitalized on the hospital Valle del Nalón, located in Asturias (Spain). The complete data

set can be seen in Gil et al., 2007.

Table 2: Systolic (X) and diastolic (Y ) blood pressure fluctuation of some patients

X Y X Y X Y

[11.8,17.3] [6.3,10.2] [11.9,21.2] [4.7,9.3] [9.8,16.0] [4.7,10.8]

[10.4,16.1] [7.1,10.8] [12.2,17.8] [7.3,10.5] [9.7,15.4] [6.0,10.7]

[13.1,18.6] [5.8,11.3] [12.7,18.9] [7.4,12.5] [8.7,15.0] [4.7,8.6]

... ... ... ... ... ...

The aim is to express Y by means of a linear model with the structure of (2) in terms of the values of X,

and to compute a simultaneous confidence region for that relationship at significance level 95%. From

the available data set, the estimated model is Ŷ = 0.4527XM + 0.2641XS + [0.1418, 3.2422]. If we run

the algorithm with B = 1000 and 1− ρ = 0.95, K̂ = 0.1430 is obtained. Thus, the 0.95−simultaneous

confidence region for {E(Y/X = x) : x ∈ Im(X)} has the expression:

SCR0.95 =

{
A ∈ Kc(R) :

dθ
(
A, Ê(Y |X = x)

)
≤ (0.143)(0.949)

√
3.582 + (midx− 14.678)2 + (sprx− 3.489)2, ∀x ∈ ImX

}
.
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6. Concluding remarks

A bootstrap algorithm to construct the (1−ρ)−simultaneous confidence regions for the regression

function of a flexible linear model between random intervals has been proposed. The algorithm has

been shown to be empirically correct, since the coverage rates obtained for different simulated data

approximate the desirable nominal level in all the investigated situations. Thus, the algorithm has

been applied over a real data set in order to show its applicability in practice. It remains the possible

development of the procedure by means of an asymptotic approach, studying the limit distribution of

the statistic Ân. It can be remarked that the asymptotic techniques provide accurate results for very

large samples sizes, in general, whereas bootstrap methods are generally more adequate for small or

moderate sample sizes.
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