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Consider an object that is measured using an ordinal scale with K ordered categories. The common 
approach when dealing with ordinal scale values is to convert the ordinal estimation into a numerical one by 
assigning numerical values to each category of the ordinal variable. This procedure is undesirable because it 
can lead to misunderstanding and misinterpretation of the measurement results [Blair & Lacy (2000), 
Franceschini et al. (2005), Bashkansky & Gadrich (2008)]. Since ordinal variable values can only be 
comparisons of “greater than”, “less than”, “equal to” and “unequal to”, all statistical measures of such 
ordinal variables must reflect these limitations. The focus of this article is on ORDANOVA (Ordinal data 

analysis of variation); i.e., the analysis of ordinal data variation. Once we understand how to make this 
analysis, the knowledge can be utilized for practical engineering applications such as quality/failure 
classification, uncertainty evaluation, repeatability and reproducibility (R&R) analysis, distinguishing feature 
identification and so on.  
 

Description of ordinal data  

The complete description of the set of n ordinal data based on an ordinal scale with K ordered 

categories coded by integers k =1,2,...,K is given by the set    1 2 1
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and 
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ˆ ˆ ˆ ˆ1,2,..., , 0 ... ( 1)KkF k K F F F      be the proportion and cumulative frequency of data belonging 

to/(up to) the k-th category. Denote by kp    and kF  the theoretical distributions describing the studied 

phenomenon. The set  1
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distribution, in the same manner as the sets   1
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provide the full description of sample 

distribution. It is well known [Agresti (2002)] that for a random sample of size n, the probability of receiving 

the set   1
K

k kn


 is given by the following multinomial distribution: 
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and also simple calculation shows that  ˆ( ) (1 )k k kVar F F F n   . The last is obvious if we consider all 

categories from 1 to k as one category and from k+1 up to K as another category. 

For the aim of the following analysis we will also briefly consider some metrological aspects of 
ordinal measurement/classification [Bashkansky & Gadrich (2010b)]. 

Measurement errors resulting from misclassification are described using a „K by K‟ stochastic 

classification matrix P̂ . Its components, j iP  (where1 i, j K  ), are the conditional probabilities that an 

object will be classified as relating to level j , given that its actual/true level is i (clearly, 

|
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P i j K
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   ). For every , ; j ii j P  contains all the necessary information about the 

measurement/classification errors. 
The most exact error-free ordinal measurement means that P̂  is the unit matrix. For the “blind”, most 

disordered sorting (MDS), when classification is made without any correlation between true and measured 
categories, all the components of the classification matrix M̂DSP  are equal: 1 1 ,j iP K i j K   . 
 

Choosing an ordinal dispersion measure  

In this paper we focus on an ordinal dispersion measure that allows practical engineering applications 
such as quality/failure classification, uncertainty evaluations, repeatability and reproducibility (R&R) 
analysis, distinguishing feature identification and so on. In order to fulfill these targets the desirable 
properties of such a variation measure for a given { kp } (or equivalently { kF }) distribution, are as follows:  

(1) It equals zero when all the data relate to a single category. 
(2) It has a maximal value for the most polarized distribution (50% of data belong to the lowest 

category and 50% belong to the highest category).  
(3) It is reversible, i.e., invariant to category order inversion. 
(4) It is similar to a Bernoulli distribution variation, when applied to only two categories. 
(5) It is similar to existing measures of inequality (Gini [Yitzhaki (1998)], for example).  
(6) The measure can be decomposed to “between” and “within” components.   
Based on a literature survey, we assembled a number of ordinal dispersion measures. Our study 

showed that all the above mentioned properties are best satisfied by Blair and Lacy‟s (2000) measure defined 
for population as in (3) and for sample distribution as in (4): 
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(the sub-index T Total means that the measure is calculated based on the all data). These measures are 
normalized to the [01] range.  

Applying (3) to every ordinal level  1,2,...,i i K of the classification matrix, one receives K 
repeatability dispersion  iD  measures [Bashkansky & Gadrich (2010b)]: 
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where 
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 is the cumulative frequency of data belonging up to the k-th category, given that its 

actual/true level is i.  Note: repeatability does not necessarily mean accuracy. For example, for fully 
opposite classification, repeatability is perfect ( : 0ii D  ). 

 

ORDANOVA decomposition  

Let us consider M  ordinal samples of different sizes – mn  (
1

M

m
m

n N


 ) as a subject for variation 

analysis. Denote m
m

n
N

  (
1

1
M

m
m



 ). 

Let  ˆ 1,2,... ; 1,...,km

m
km

n
p k K m M

n
   and  ˆ 1,2,... ; 1,...,kmF k K m M   be the proportion and 

cumulative frequency of data belonging to/(up to) the k-th category in the m-th sample. 
Denote by .ˆkp the total proportion of items belonging to the k-th category. It follows that: 
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while the total cumulative frequency of items belonging up to the k-th category .
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Now define the total variation 
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and the within m-th sample variation as: 
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The classic variation between the k-th category sample‟s cumulative frequencies is averaged by: 
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The ORDANOVA decomposition allows the total variation 
 
2ˆ
Th

 
to be split into the “within” and 

“between” components as follows: 
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Due to space limitations, we omit the proof of this decomposition.  
 
Using the ORDANOVA decomposition in engineering applications 

 

Inference about the multinomial proportions from small samples  

Assume that some entity (such as quality, for example) is measured on an ordinal scale basis with K 
levels. M samples of equal size n are drawn at different times or from different places or from different 
processes and so on. Each sample contains data distributed among K categories. A common question is: 

whether all samples were drawn from the same population characterized by some set of  kp , or from 

different populations that differ in time, place, and process and so on? Such an approach is typical, for 
example, in Statistical Process Control (SPC) interested in checking process stability, when comparing 
process lines or raw material suppliers, as well as in many other engineering applications. 

Different approximations for large samples are not valid for small samples, whereas “exact” solutions 
[Agresti (2002)] are usually intended for the binary case only. Using the above ORDANOVA decomposition 
(11), some auxiliary insight can be concluded based on the following considerations. 

If the assumption 0H that all samples come from the same population  kp  is true, then: 
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and therefore, we can roughly estimate in what proportion the total variation is expected to be split among its 
“between” and “within” components (and this splitting does not depend on the amount of categories!).  
Once more we omit the proof due the size limitations. Fluctuations in the splitting are, of course, possible; 
for each case they may be simulated and their likelihoods can be assessed using (1), but it is reasonable to 
assume that any dramatic change in the expected splitting will make us suspicious of the 0H  hypothesis.  

For a ternary scale (K=3) and samples larger than 100, [Bashkansky & Gadrich (2010a)] provided a 
complete solution based on asymptotical delta method. In the same manner, a solution for more than three 
categories can be reached. For small samples we propose to base our answers on (12-15) and see (11) as a 
challenge to the further advancement of the problem‟s research. 

 

Analyzing the accuracy of the ordinal measuring/classification system 

Another important area, where a study of the variation is essential, is accuracy analysis of measuring 
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systems (MSs), especially their precision component, such as repeatability and reproducibility (R&R) 
[Bashkansky et al. (2011)]. It is clear that when the assessed entity is an ordinal quantity with K levels, we 
need to use the appropriate ordinal measure of dispersion (3,4) to analyze the total variation change after 
classification. 

 Let us suppose that N objects (e.g., items produced by some manufacturing line) are submitted to 
ordinal MS for aim of its metrological analysis. Note by kn the amount of objects belonging to the k-th 
ordinal category (item quality level, for example), and by k kp n N  their a priori proportion of the total 

amount N (the true values of these proportions are known). After passing through the measuring process 
objects may be redistributed to the categories due to MS errors. The latter are expressed with the help of a 
classification matrix, as described in the section titled “Description of ordinal data”. In order to evaluate the 
dispersion after implementing the MS, we applied (3) to q‟s proportion vector  1 2, ,..., Kq q q  where 
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is the cumulative frequency of data belonging up to the k-th category. 

Similar to the ORDANOVA decomposition, this yields: 
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is the cumulative frequency of items belonging up to the k-th category. 
After classification the variation may increase, decrease or remain unchanged relative to the incoming 

variation.  
 

Distinguishing factor identification 

Following (15), if the factor under study does not yield to segregation between groups formed 
according to different levels of the factor, the “between” to “within” variation parts ratio is expected to be no 
more significant than the “between” to “within” ratio of degrees of freedom: 

       
2 2/ . . / . .B W B WS h d f d f

. (18)
 

It is plausible to assume that the more the LHS of (18) exceeds its RHS, the greater is the segregative 
effect of the factor studied. With some caution we may even suggest that the LHS/RHS ratio can serve as an 
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indicator of the segregation power (discrimination significance) by this factor. An example of such an 
approach is the analysis of university course evaluations, based on a simplified, but similar considerations 
taking into account the ordinal nature of student ratings [Rampichini et al. (2004)]. The satisfaction survey 
questionnaire items with higher values of variation between courses were considered to be the most reliable 
indicators of course quality. 
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