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Introduction

Stated choice experiments are a common method for modelling decision making behaviour.

These experiments are used in many disciplines, including marketing, health economics, tourism, and

public policy. Louviere et al. (2000) and Train (2003) provide a good introduction to the area.

In a stated choice experiment each respondent is presented with a series of choice sets, the

same series for each respondent, and for each choice set they are asked to choose one of the options

presented. In general we will describe the items to be compared by k attributes, where we assume that

the qth attribute has `q levels, represented by 0, 1, . . . , `q−1, and that each choice set in an experiment

has m options. We assume that no choice set contains a repeated option and that no choice set is

repeated in an experiment. We also assume that the options are generic and unlabelled. Provided

that the choice experiment has been correctly designed, these responses can be used to estimate the

effects of each of the attributes on the probability that an item is selected, and to estimate the effects

of the interactions of any two of the attributes on the probability that an item is selected.

In these circumstances, if respondents are forced to choose one of the items in each choice set,

a number of results about the optimal design exist; see Street and Burgess (2007) for a summary of

this and related work. This work assumed the multinomial logit (MNL) model. In choice sets of size

2 the MNL model coincides with the Bradley–Terry model.

Sometimes respondents do not have a ‘best’ option, but find that two, or more, items are equally

attractive. Davidson (1970) extended the Bradley–Terry model so that ties could be accommodated

in a paired comparison experiment. Bush et al. (2010) extend this model to allow for a fixed, but

arbitrary, number of options within a choice set. The authors referred to this extended model as the

generalised Davidson ties model.

In this paper, we perform simulations to compare the ability of different designs to efficiently

estimate model parameters for the generalised Davidson ties model. In the next section, we introduce

the model, and state the optimality result proved in Bush et al. (2010). We then perform a simulation

study to compare D–optimal designs under the null hypothesis of equal selection probabilities to an

alternative design, for various values for the model parameters.

The Generalised Davidson Ties Model

Suppose that we present m items {Ti1 , . . . , Tim} = C to the respondent. Then we can estimate

a merit, πi, for each of these items. If we use the MNL model, the probability that the item Ti ∈ C
is chosen is P (Ti|C) = πi/(

∑m
a=1 πia). In this set up, the respondent is forced to choose a single item

from the choice set, even if they actually find two or more items equally attractive. In this section we

discuss the generalisation of the MNL model to accommodate ties introduced in Bush et al. (2010).

If we allow ties then, when m > 2, the respondent is not only permitted to find pairs of items

in the choice set equally attractive, but is also permitted to state that larger subsets of the items in

the choice set are equally attractive. Bush et al. (2010) uses Davidson’s argument that the merit of

finding a set of items equally attractive is proportional to the geometric mean of the item merits, and

also assumes that the proportionality is constant across choice sets and is strictly positive. We denote
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this proportionality constant by ν. If this constant is equal to zero then this means that no respondent

has stated that any of the items in any of the choice sets are equally attractive, and in this case the

MNL model should be used instead.

Bush et al. (2010) lets the merit of item Ti be πi, the merit of the set of items Ti1 and Ti2 be

ν
√
πi1πi2 . Let the merit of the set of items Ti1 , Ti2 and Ti3 be ν 3

√
πi1πi2πi3 and so on until the merit of

the respondent finding all of the m items in the choice set equally attractive being ν m
√
πi1πi2 . . . πim .

Then, for a choice set C = {Ti1 , Ti2 , . . . , Tim}, the sum of the merits for each possible decision is DC ,

where

DC =
m∑
a=1

πia +
m∑
x=2

∑
{Tj1 ,...,Tjx}⊆C

ν x
√
πj1 . . . πjx .

We can then express the probabilities for each decision as

P (Ti1 |C) =
πi1
DC

, P ({Ti1 , Ti2}|C) =
ν
√
πi1πi2
DC

, . . . , P ({Ti1 , Ti2 , . . . , Tim}|C) =
ν m
√
πi1πi2 . . . πim
DC

.

As in Street and Burgess (2007), we are interested in estimating the contrasts Bγγγγ as well as

ν. These contrasts, whose coefficients are in Bγ , may correspond to the main effects of the attributes,

or two–factor interactions between attributes, or perhaps subsets of these. The results in Bush et

al. (2010), as with those in Street and Burgess (2007), find designs that are optimal under the null

hypothesis of equal selection probabilities, that is πππ = 1. Bush et al. (2010) show that the information

matrix for the estimation of Bγγγγ and ν, where Bγ contains contrasts of the attributes, is

C(πππ0, ν) =

[
Q(m, ν)× C(πππ0)MNL 000

000 Λνν(m, ν)

]
,

where

Q(m, ν) =
m+ ν

∑m
x=2(

m−x
x(m−1)

(
m
x

)
)

m+ ν
∑m

x=2

(
m
x

) ,

C(πππ0)MNL is the Fisher information matrix for the estimation of the MNL model using the same

design, and Λνν(m, ν) is a 1 × 1 element which is independent of the design for a fixed value of m.

Bush et al. (2010) use this relationship to prove the following theorem.

Theorem 1. (Bush et al. (2010)) For a set of p contrasts of the entries in γγγ and a constant but

unknown ν, the D–optimal design for the estimation of the contrasts of γγγ over a set of competing

designs X when the MNL model is used will also be D–optimal for the estimation of the same contrasts

and ν over the same set of competing designs when estimating the generalised Davidson ties model.

This theorem allows us to use the results that exist for the MNL model, such as those in Burgess

and Street (2003) and Burgess and Street (2005) to find optimal designs under the null hypothesis

when the generalised Davidson ties model is used.

Simulations of the generalised Davidson ties model

In this section we consider the performance of the generalised Davidson ties model under various

model assumptions by carrying out a number of simulation studies. We assume that there are two

attributes, both with two levels, and m = 3 throughout. We consider two sets of values for the

parameters. In the first set we assume that both main effects parameters, τ1 and τ2, are equal to 0

and the ties parameter ν = 0.5, and in the second set we assume that τ1 = 1 and τ2 = −1 although

ν = 0.5 still.
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We find the locally optimal design for each set of values and compare the performance of each

design with both sets of parameter values. The design in Table 1(a) is optimal for the estimation of

the main effects of the attributes plus the ties parameter when τ1 = τ2 = 0, and ν = 0.5, by Theorem

1 and Theorem 1 of Burgess and Street (2003). By an exhaustive search of the 24 − 1 = 15 possible

designs, the design in Table 1(b) is optimal for the estimation of the main effects of the attributes

plus the ties parameter when τ1 = 1, τ2 = −1, and ν = 0.5.

We first assume that τ1 = τ2 = 0, and ν = 0.5 and compare the simulated distributions of the

parameter estimates when the designs in Tables 1(a) and (b) are used in turn. Each simulation is

modelled using the simulated responses from 150 respondents, and the summary statistics describe

the distributions of the estimates from 1000 such simulations. The summary statistics for the first set

of parameter values are provided in Table 2. We see that the distributions of the parameter estimates

are symmetrically distributed. As expected, the variance of the parameter estimates for the design in

Table 1(a) is smaller than that of the design in Table 1(b), even after taking into account the different

numbers of choice sets in the two designs, illustrating the efficiency of the former design.

We now consider the performance of these two designs when τ1 = 1, τ2 = −1, and ν = 0.5.

Summary statistics for the distributions of the parameter estimates when the designs in Tables 1(a) and

(b) are used are provided in Table 3. We see that, for both designs, the distributions of the parameter

estimates seems to be unbiased and close to symmetric. The difference between the variances arising

from the two designs is smaller in this case than when τ1 = τ2 = 0.

We now compare the ability of four different designs to estimate the main effects plus the two–

factor interaction of the attributes and ν. The first two designs are those in Tables 1(a) and (b). The

third design is shown in Table 4(a), and is optimal for the estimation of the main effects plus the

two–factor interaction of the attributes and ν when τ1 = τ2 = τ12 = 0, and ν = 0.5, by Theorem

1 and Theorem 2 of Burgess and Street (2003). The final design, shown in Table 4(b), is locally

optimal for the estimation of the main effects plus two–factor interaction of the attributes and ν when

τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5, by an exhaustive search.

We first consider the case where there is no significant interaction effect. We let τ1 = 1, τ2 = −1,

τ12 = 0, and ν = 0.5. Summary statistics for the parameter estimates for the designs in Tables 1(a)

and (b), and Table 4(a) and (b) are provided in Table 5.

The design in Table 4(a) gives parameter estimates with the smallest variance, and are also

unbiased and symmetrically distributed. The designs in Tables 1(a) and 4(b) also give unbiased and

symmetric parameter estimates, but with a larger variance than those from the design in Table 4(a),

even after taking into account the different numbers of choice sets in the two designs. The design in

Table 1(b) gives parameter estimates that are slightly biased towards 0, skewed, and with the largest

variance of the four designs.

Now we consider the case where there is a significant interaction effect. Suppose that τ1 = 1,

τ2 = −1, τ12 = −0.25, and ν = 0.5. Summary statistics for the parameter estimates when each of the

four designs are used are provided in Table 6.

Again we see that the design in Table 4(a) gives parameter estimates with the smallest variance,

and are also unbiased and symmetrically distributed. The designs in Tables 1(a) and 4(b) once again

give unbiased and symmetric parameter estimates, but with a larger variance than those form the

design in Table 4(a). The design in Table 1(b) once again gives parameter estimates that are slightly

biased towards 0, skewed, and with the largest variance of the four designs.

In summary, we see that the designs that are optimal for the estimation of a certain set of effects

appear to give parameter estimates that are unbiased and reasonably symmetric when estimating the

same set of effects. When designs are used for the estimation of a different set of parameters to those

that the design is constructed for, there may be bias in the parameter estimates.
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Option 1 Option 2 Option 3 Option 1 Option 2 Option 3

0 0 0 1 1 0 0 0 1 0 1 1

0 1 0 0 1 1 0 1 1 0 1 1
1 0 1 1 0 0

1 1 1 0 0 1 (b)

(a)

Table 1: Optimal design for estimating main effects and ν when τ1 = τ2 = 0, and ν = 0.5 (a) and

when τ1 = 1, τ2 = −1, and ν = 0.5 (b).

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 1(a)

τ1 −0.00088(0.00165) 0.00278 0.00271 0.02920(0.07734)

τ2 −0.00244(0.00165) 0.00278 0.00273 0.13122(0.07734)

Design in Table 1(b)

τ1 −0.00445(0.00237) 0.00556 0.00564 −0.04829(0.07734)

τ2 −0.00303(0.00232) 0.00556 0.00536 −0.10379(0.07734)

Table 2: Summary statistics for τ1 = τ2 = 0, and ν = 0.5.
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 1(a)

τ1 1.00248(0.00216) 0.00320 0.00465 0.20895(0.07734)

τ2 −0.99894(0.00226) 0.00320 0.00510 −0.21943(0.07734)

Design in Table 1(b)

τ1 1.01053(0.00417) 0.00545 0.01736 0.36056(0.07734)

τ2 −0.99980(0.00307) 0.00544 0.00941 −0.18175(0.07734)

Table 3: Summary statistics for τ1 = 1, τ2 = −1, and ν = 0.5.

Option 1 Option 2 Option 3 Option 1 Option 2 Option 3

0 0 0 1 1 0 0 0 0 1 1 0

0 1 0 0 1 1 0 0 0 1 1 1

1 0 1 1 0 0 0 0 1 1 1 0

1 1 1 0 0 1 1 1 1 0 0 1
0 0 1 0 1 1

0 1 1 1 1 0 (b)

1 0 0 0 0 1

1 1 0 1 0 0

0 0 0 1 1 1

0 1 0 0 1 0

1 0 1 1 0 1

1 1 1 0 0 0

(a)

Table 4: Optimal design for estimating main effects, two–factor interactions and ν when τ1 = τ2 =

τ12 = 0, and ν = 0.5 (a) and when τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5 (b).
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Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 1 (a)

τ1 0.98950(0.00240) 0.00320 0.00574 0.14233(0.07734)

τ2 −0.99129(0.00240) 0.00322 0.00578 −0.18005(0.07734)

τ12 −0.02435(0.00233) 0.00321 0.00543 0.17092(0.07734)

Design in Table 1 (b)

τ1 0.99104(0.00482) 0.00549 0.02319 0.60368(0.07734)

τ2 −0.96591(0.00446) 0.00729 0.01985 −0.28153(0.07734)

τ12 −0.03756(0.00438) 0.00729 0.01919 0.30541(0.07734)

Design in Table 4 (a)

τ1 0.98549(0.00141) 0.00107 0.00198 0.08501(0.07734)

τ2 −0.98395(0.00134) 0.00107 0.00180 −0.02499(0.07734)

τ12 −0.02720(0.00133) 0.00107 0.00176 0.05257(0.07734)

Design in Table 4 (b)

τ1 0.98751(0.00282) 0.00400 0.00793 0.18660(0.07734)

τ2 −0.98777(0.00272) 0.00411 0.00738 −0.10613(0.07734)

τ12 −0.03117(0.00257) 0.00404 0.00661 0.17683(0.07734)

Table 5: Summary statistics for τ1 = 1, τ2 = −1, τ12 = 0, and ν = 0.5.

Parameter Simulated Mean Theoretical Simulated Simulated Skewness
(Standard Error) Variance Variance (Standard Error)

Design in Table 1 (a)

τ1 0.99699(0.00236) 0.00329 0.00559 0.10950(0.07734)

τ2 −0.99738(0.00239) 0.00331 0.00574 −0.22312(0.07734)

τ12 −0.27001(0.00233) 0.00330 0.00541 0.10207(0.07734)

Design in Table 1 (b)

τ1 1.01073(0.00513) 0.00575 0.02628 0.57665(0.07734)

τ2 −0.98728(0.00462) 0.00764 0.02132 −0.31215(0.07734)

τ12 −0.28134(0.00442) 0.00764 0.01950 0.29241(0.07734)

Design in Table 4 (a)

τ1 0.99521(0.00137) 0.00110 0.00189 0.13158(0.07734)

τ2 −0.99530(0.00138) 0.00110 0.00191 −0.07656(0.07734)

τ12 −0.27166(0.00133) 0.00110 0.00176 0.08612(0.07734)

Design in Table 4 (b)

τ1 1.00344(0.00302) 0.00418 0.00912 0.23760(0.07734)

τ2 −0.99695(0.00260) 0.00431 0.00677 −0.11871(0.07734)

τ12 −0.27676(0.00253) 0.00422 0.00640 0.00381(0.07734)

Table 6: Summary statistics for τ1 = 1, τ2 = −1, τ12 = −0.25, and ν = 0.5.
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