
A MAGICAL TALK: ESTIMATING AT LEAST SEVEN 
MEASURES OF QUALITATIVE VARIABLES FROM A 
SINGLE SAMPLE USING RANDOMIZED RESPONSE 
TECHNIQUE 
 
Lee, Cheon-Sig, Sedory, Stephen A., and Singh, Sarjinder 
Department of Mathematics 
Texas A&M University-Kingsville 
Kingsville, TX 78363-8202, USA 
Email: kuss2008@tamuk.edu 
 
ABSTRACT 

A social scientist could be considered to be a tool-less mechanic if he/she does not have the appropriate 
statistical tools for collecting, analyzing and interpreting a dataset. Good tools are required for a mechanic to make a 
good vehicle. In the same way, good statistical tools are required for a social scientist to collect, analyze and 
interpret a dataset. The dependency of a social scientist on statistical tools is in no way less than the dependency of a 
mechanic on mechanical tools. A mechanic cannot build a vehicle without mechanical tools. A social scientist 
cannot build a model of a phenomenon for a society without collecting, analyzing and interpreting the views of 
persons from the same society in an appropriate way. In this talk, like a magician can show several birds flying out 
of an empty basket, we shall show that at least seven parameters of interest to a social scientist can be estimated 
from a single sample and one response from each respondent in the sample. A real survey data application is given. 
 
1. Introduction 

Warner (1965) proposed an interviewing technique, called Randomized Response, to protect an 
interviewee’s privacy and to reduce a major source of bias (evasive answers or refusing to respond) in 
estimating the prevalence of sensitive characteristics in surveys of human populations.  Warner (1965) 
designed a randomization device, for example a spinner or a deck of cards that consists of two mutually 
exclusive outcomes.  In the case of carks, each card has one of the following statements: (i) I possess 
attribute A; (i) I do not possess attribute A. The maximum likelihood estimator of π, the proportion of 
respondents in the population possessing the attribute A, is given by: 
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where 1n  is the number of individuals responding “yes”, n is the number of respondents selected by a 
simple random and with replacement sample (SRSWR), and P is the probability of the statement “I 
possess an attribute A”.  The variance of w̂  is given by: 
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Odumade and Singh (2009) suggested another randomized response model (which we refer to as the 

OS model) using two decks of cards.  Each deck of cards, designated Deck-I and Deck-II, is the same as 
in the Warner’s model, but with different probabilities.  Under the OS model, respondents go through the 
Warner’s model twice for a single attribute.  
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Christofides (2005) developed a new method to estimate the 
proportion of individuals having two sensitive characteristics which 
we describe in detail : Assume that in a population   some 
respondents possess either sensitive attribute A  or sensitive 
attribute B , both A and B or none of these.  A pictorial 
representation of such a population is shown in the Venn diagram in 
Figure 1.2.  Let A  be the population proportion of the people 

possessing the sensitive attribute A; B  be the population  

 
 
 
 
 
 
 
 
  Figure 1.2.  Population of interest. 

proportion of the people possessing the sensitive attribute B ; AB  be the population proportion of the 

people possessing the both sensitive attributes BA .  Note that  cBA )(  and  )()( BABA c . 

Christofides (2005) developed estimators for A , B , AB , and BA .  In this study, we developed two 

different methods for estimating nine different parameters: A , B , AB , BA , AB , BA , BA , d , 

and )( BARR , where AB  stands for correlation coefficient between two the sensitive characteristics, RR 

stands for the relative risk of A given B, and other parameters are to be defined below.  The methods 
developed here are simpler and more practical than the Christofides’ (2005) model.  The first and second 
proposed methods are named the Simple Model and the Crossed Model, respectively, in the following 
sections. 
 
2. Simple Model 

We consider selecting a simple random and with replacement 
sample of n respondents from the given population.  Two shuffled 
decks of cards are provided to each respondent in the sample.  The 
decks are marked as Deck-I and Deck-II and each deck is comprised 
two sorts of cards that indicate whether or not the respondent possesses 
a particular sensitive characteristic.  Two types of cards are present in 
proportions as shown in Figure 2.1.  Each respondent is requested to 
draw one card from each deck, matches his or her status with the 
statement on the card drawn from Deck-I and Deck-II, and then

 AI  with probability P  
cAI  with probability  P1  

Deck-I 
 

BI  with probabilityT  
cBI  with probability  T1  

Deck-II 
Figure 2.1. Two Decks of Cards 

reports the result in terms of “Yes or No” without reporting the statement written on the card to the 
interviewer.  The probabilities of (Yes, Yes), (Yes, No), (No, Yes), and (No, No) are denoted as 11 , 10 , 

01 , and 00 , respectively. Responses fall into four categories as follows: 
Category 1: (Yes, Yes) response results from four different ways. If the respondent possesses both 
sensitive characteristics A and B and draws statements “ AI  ” and “ BI  ” from Deck-I and Deck-
II, respectively, then the respondent is requested to report (Yes, Yes).  If the respondent possesses a 

sensitive characteristic A, but B, and draws statements “ AI  ” and “ cBI  ” from each deck of 
cards, respectively, then the respondent is requested to report (Yes, Yes).  If the respondent possesses 

a sensitive characteristic B, but A, and draws statements “ cAI  ” and “ BI  ” from each deck of 
cards, respectively, then the respondent is requested to report (Yes, Yes).  If the respondent does not 

possess either sensitive characteristics A and B and draws statements “ cAI  ” and “ cBI  ”, then the 
respondent is requested to report (Yes, Yes).  Thus, the response (Yes, Yes) may result whether a 

respondent belongs to group A, cA , B, or cB  and hence, their privacy will be protected.  The 
probability of getting the response (Yes, Yes) is given by: 

           TPTPTPTP BAAB  11121112121211                   (2.1) 
Category 2: In the same manner in the (Yes, Yes) response, the response (Yes, No) may result from 
four different ways; the probability is given by: 

         TPTPTPTP BAAB  112112121210                                (2.2) 
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Category 3: Similarly, the response (No, Yes) results from four different ways and has the probability 
given by: 

         TPTPTPTP BAAB  112112121201                                (2.3) 
Category 4: Similarly, the response (No, No) results from four different ways, and has the probability 
given by: 

       PTTPTPTP BAAB   1212121200                                                (2.4) 

Responses from n respondents can be classified into the four 
categories as shown in Table 2.1 and the corresponding true 
probabilities of these responses are shown in Table 2.2.  Note that 

11 , 10 , 01 , and 00  are given in the equations (2.1), (2.2), (2.3), 

and (2.4), respectively and that 100011011   . Note also that 

nnnnn  00011011 .  Let nn /ˆ
1111  , nn /ˆ

1010  , nn /ˆ
0101  , and 

nn /ˆ
0000   be the observed proportions respectively of (Yes, 

Yes), (Yes, No), (No, Yes), and (No, No) responses. 

Responses Yes No 
Yes ݊ଵଵ ݊ଵ଴ 
No ݊଴ଵ ݊଴଴ 

Table 2.1. Observed responses 
 

True 
Probabilities 

Deck-II 
Yes No 

Deck-I 
Yes ߠଵଵ ߠଵ଴ 
No ߠ଴ଵ ߠ଴଴ 

Table 2.2. Expected proportions 
The least square distance between observed proportions and true proportions is defined as follows:
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 to minimize the least squared distance D, and by using the 

method of moments, we have the following theorems: 
Theorem 2.1. Unbiased estimators of the population proportions A , B  , and AB  are given by: 
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and 
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for 5.0T  and 5.0P      
Theorem 2.2. The variance of A̂ , B̂ , and AB̂  are given by:   
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for 5.0TP     
Now, we suggest a natural estimator of the conditional proportion BA  as: 
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Then we have the following theorems: 
Theorem 2.3. The bias, to the first order of approximation, in the estimator BA̂  is given by: 
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Theorem 2.4. The mean squared error, to the first order of approximation, of the estimator BA̂  is given 

by: 
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An unbiased estimator of the proportion of persons possessing exactly one characteristic, say A but not B, 

BA , is given by 

ABABA  ˆˆˆ                                                                                                            (2.15) 

Theorem 2.5. The variance of the estimator BA̂  is given by 

       ABAABABA CovVVV  ˆ,ˆ2ˆˆˆ                                                                 (2.16) 
An unbiased estimator of the proportion of persons who possess at least one of the characteristics A or B, 
that is, BA̂  is given by 

ABBABA  ˆˆˆˆ                                                                                                    (2.17) 

Theorem 2.6. The variance of the estimator BA̂  is given by 
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Following Rosner (2006), we define a natural estimator of a relative risk (RR) of a respondent belonging 
to group B given that the respondent belongs to group A as: 
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Then we have the following theorems: 

Theorem 2.7. The bias in the estimator  ABRR


, to the first order of approximation, is given by: 
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Theorem 2.8. The mean squared error of the estimator  ABRR


, to the first order of approximation, is 

given by: 
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Now we consider a usual estimator of the correlation coefficient AB  as: 
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Then we have the following theorems: 
 
Theorem 2.9. The bias in the estimator AB̂ , to the first order of approximation, is given by:  
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Theorem 2.10. The mean squared error of the estimator AB̂ , to the first order of approximation, is given 
by: 

       






ABA

ABA

B

B

A

A

AB

AB
ABAB

CovFFV
F

V
F

V
FMSE













ˆ,ˆ2ˆˆˆ
)ˆ( 21

2
2

32
2

22
2

1
2  

   






BA

BA

ABB

ABB CovFFCovFF





 ˆ,ˆ2ˆ,ˆ2 3231                      (2.24) 

where ,1
BAAB

ABF






 
  ,
12

21
2

A

A

BAAB

BAF












  
 
  ,
12

21
3

B

B

BAAB

BAF












  

 
    

 
 

,
18

213

1212

21
24

A

A

A

A

BAABA

ABAF





















 
    

 
 

,
18

213

1212

21
25

B

B

B

B

BAABB

BBAF



















  

   ,
114

3221
6

BAAB

BA

BA

BABAF













 

   and,
12

21
7

BAABA

AABF








 
  BAABB

BABF








12

21
8  

Now we consider an unbiased estimator of the difference between two proportions d  as: 

BAd  ˆˆˆ                                                                                                            (2.25) 
Then we have the following theorem: 
 
Theorem 2.11. The variance of the estimator d̂  is given by 

       BABAd CovVVV  ˆ,ˆ2ˆˆˆ                                                                              (2.26) 

When proportions A  and B  are considered independently, variances of  AV ̂  and  BV ̂  remain 
same as in the Warner (1965).  However, the case of independence is of no interest in this study.  Thus, 
the proposed simple model has the advantages of estimating additional parameters, such as BA  , BA| , 

BA , BA ,  BARR , AB , and d  etc.  These make it possible for a social scientist to relate two 

sensitive characteristics to make a more insightful decision about the prevalence of such characteristics in 
a society under study.  Now a natural question arises:  Is it possible to develop a model with two decks of 
cards which could be more efficient than the Warner model even while estimating only the individual 
population proportions A  and B  as well?  This idea motivates to think about a new model in the 
following section which is labeled as Crossed Model. 

 
3. Crossed Model 

All assumption and the procedure are 
the same as in section 2.  The method 
uses two decks of cards as in section 2.  
The two decks for the Crossed Model are 
shown in Figure 3.1. 

AI  with probability P  

 

BI  with probabilityT  
cBI with probability  P1  cAI with probability  T1  

Deck-I Deck-II 

Figure 3.1. Two Decks of Cards 
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With the crossed model, each response, (Yes, Yes), (Yes, No), (No, Yes), and (No, No), of individuals in 
population may also occur from four different ways; the probabilities of getting each response are given 
by: 

  )1)(1()1)(1()1)(1()1)(1(11 TPTPTPTPPT BAAB                       (3.1) 

    TPTPTPTPPT BAAB )1()1(1)1()1)(1(10                                 (3.2) 

    )1(1)1()1()1)(1(01 TPTPTPTPPT BAAB                                 (3.3) 
and 

  PTPTPTTPPT BAAB   )1)(1(00                                                                (3.4) 

Responses from the n respondents can be classified into the four 
categories as before, as shown in Table 3.1, and their 
corresponding true probabilities of these responses are as show in 

Table 3.2.  
11 , 

10 , 
01 , and 

00  are given in the equations (3.1), 
(3.2), (3.3), and (3.4), respectively.  As before, we note that: 

1*
00

*
01

*
10

*
11    and nnnnn  

00011011 .  Recall that our 

aim is to estimate the three unknown population proportions A , 

B  and AB   of the respondents belonging to groups A, B, and 

BA , respectively.  Let nn /ˆ *
11

*
11  , nn /ˆ *

10
*
10  , nn /ˆ *

01
*
01  ,  

Responses Yes No 
Yes ݊ଵଵ

∗  ݊ଵ଴
∗  

No ݊଴ଵ
∗  ݊଴଴

∗  
Table 3.1. Observed responses 

 
True 

Probabilities 
Deck-II 

Yes No 

Deck-I 
Yes ߠଵଵ

∗ ଵ଴ߠ 
∗  

No ߠ଴ଵ
∗ ଴଴ߠ 

∗  
Table 3.2. Expected proportions 

and nn /ˆ *
00

*
00   be the observed proportions of (Yes, Yes), (Yes, No), (No, Yes) and (No, No) 

responses.   
The least square distance between observed proportions and true proportions is defined as follows: 


 


1

0

1

0

2*** )ˆ(
2

1

i j
ijijD                                                                                      (3.5) 

On setting 0

 

A

D


, 0

 

B

D


, and 0


 

AB

D


 to minimize the least squared distance D, and by using the 

method of moments we have theorems as follows: 
 
Theorem 3.1. Unbiased estimators of the population proportions A , B , and AB  are given by: 

    
 12

ˆˆ1ˆˆ)1(

2

1
ˆ 01100011*







TP

TPPT
A


                                                       (3.6) 

     
 12

ˆˆ1ˆˆ1

2

1
ˆ 10010011*







TP

TPTP
B

                                                     (3.7) 

and 

  
  )1()1)(1(

ˆ11ˆ
ˆ 0011*







TPTPPT

TPPT
AB

                                                                            (3.8) 

for 1 TP . 
 

Theorem 3.2. The variances of 
A̂ , 

B̂ , and 
AB̂  are given by: 

       
 21

21)1)(1(11
)ˆ(









TPn

TPPTTP

n
V ABBAAA

A


                                (3.9) 

       
 21

21)1)(1(11
)ˆ(









TPn

TPPTPT

n
V ABBABB

B

                              (3.10) 

and 
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   
    2111

11
ˆ







TPTPPTnn
V ABAB

AB




   22222 )1)}(1)(1({)1()1(  TPTPPTTPTPAB  

    BATPTPPT   1111                               (3.11) 

The natural estimator of the conditional proportion BA  is given by: 

*

*
*

| ˆ

ˆ
ˆ

B

AB
BA 

                                                                                                         (3.12) 

Now we have the following theorems: 
 

Theorem 3.3. The bias, to the first order of approximation, in the estimator 
BA̂  is give by: 

  









BAB

BAB

B

B
BABA

CovV
B





 )ˆ,ˆ()ˆ(

ˆ
**

2

*
*

|                                                           (3.13) 

where       
 

    
  22 )1()1)(1(

1111

1

111
ˆ,ˆ













TPTPPTn

TPTPPT

TPn

PTTP

n
Cov BAABBAB

BAB

     

Theorem 3.4. The mean squared error, to the first order of approximation, of the estimator *
|ˆ BA  is given by 

  









ABB

ABB

B

B

AB

AB
ABBA

CovVV
MSE








 )ˆ,ˆ(2)ˆ()ˆ(

ˆ
**

2

*

2

*
2*

|                                   (3.14) 

An unbiased estimator of the proportion of persons possessing exactly one characteristic, say A but not B,

BA , is given by 


  ABABA  ˆˆˆ                                                                                                           (3.15) 

Theorem 3.5. The variance of the estimator 
BA̂  is given by 

       
  ABAABABA CovVVV  ˆ,ˆ2ˆˆˆ                                                                (3.16) 

An unbiased estimator of the proportion of persons in the population who possess at least one of the 
characteristics A or B, that is, BA̂  is given by 


  ABBABA  ˆˆˆˆ                                                                                                  (3.17) 

Theorem 3.6. The variance of the estimator 
BA̂  is given by 

             
  ABBABABAABBABA CovCovCovVVVV  ˆ,ˆ2ˆ,ˆ2ˆ,ˆ2ˆˆˆˆ         (3.18) 

Now, we define an estimator  of a relative risk (RR)of a respondent belonging to group B given that the 
respondent belongs to group A as: 

   
 








ABBA

AABABRR


ˆˆˆ

ˆ1ˆ
                                                                                          (3.19) 

Then we have the following theorems: 

Theorem 3.7. The bias in the estimator  ABRR

 , to the first order of approximation, is given by: 

   
 
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 
 

 
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
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                (3.20) 
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where       
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Theorem 3.8. The mean squared error of the estimator  ABRR

 , to the first order of approximation, is 

given by:
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The usual estimator of the correlation coefficient between two sensitive characteristics, AB ,is given by: 

)ˆ1(ˆ)ˆ1(ˆ
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                                                                           (3.22) 

 
Then we have the following theorems: 
 

Theorem 3.9. The bias in the estimator 
AB̂ , to the first order of approximation, is given by:  
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Theorem 3.10. The mean squared error of the estimator 
AB̂ , to the first order of approximation, is given 

by: 
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Now we consider an unbiased estimator of the difference between two proportions d  as: 
  BAd  ˆˆˆ                                                                                                           (3.25) 

 
Then we have the following theorem: 
 

Theorem 3.11. The variance of the estimator 
d̂  is given by 

         BABAd CovVVV  ˆ,ˆ2ˆˆˆ                                                                             (3.26) 
 
Although we tried to compare the variances of the proposed estimators of the different parameters 

analytically to develop some theoretical conditions for efficiency of one estimator over another, the 
expressions are too complicated to reach at any conclusion.  Thus, in the next section, we compare the 
estimators of different parameters through numerical illustrations to suggest the usefulness of the 
proposed models based on the performance of the estimators in different situations. 
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4. Comparison of Two Types of Models 
We define the relative efficiency of the proposed estimators *ˆ A , *ˆB  and *ˆ AB  with respect to the 

estimators A̂ , B̂  and AB̂ , respectively, as: 
 

%100
)ˆ(

)ˆ(
)ˆ,ˆ(

*
* 

A

A
AA

V

V
RE


 , %100

)ˆ(

)ˆ(
)ˆ,ˆ(

*
* 

B

B
BB

V

V
RE


 , and %100

)ˆ(

)ˆ(
)ˆ,ˆ(

*
* 

AB

AB
ABAB

V

V
RE


 ) 

 

We used a FORTRAN program to find values of the percent relative efficiency for different choice of the 
parameters.  We decided to keep the choice of 7.0P  and 7.0T  in both the simple and crossed model.  
The values of AB  (which we generally expect small in a real survey) was fixed at 0.05, 0.1 and 0.2, and 

the values of A  and B  were changed from 0.01 to 0.99 with a step of 0.01.  Note that the relative 
efficiency expressions are free from the sample size, but in the FORTRAN code conditions were imposed 
that AAB   , BAB   , and 99.0 BA  . Graphical representation of the percent relative 
efficiencies is given in Figures 4.1 through Figure 4.3 for 05.0AB , and similar results are observed for 

AB  equal to 0.1 and 0.2. 
 

  

Figure 4.1. Percent relative efficiency of the estimator 
*ˆ A with respect to the estimator A̂  for 05.0AB . 

Figure 4.2. Percent relative efficiency of the estimator 
*ˆB with respect to the estimator B̂  for 05.0AB . 

 
 

Figure 4.3. Percent relative efficiency of the estimator 
*ˆ AB with respect to the estimator AB̂  for 05.0AB . 

Figure. 4.4. Sarjinder Singh (Left) with a deck of cards and a conference 
attendee (Right) drawing one card from the deck at the booth STAT-
HAWKERS at the Joint Statistical Meeting, Miami Beach, FL. 
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Figures 4.1-4.3 show that the estimators 
A̂ , 

B̂  and 
AB̂  remain, respectively, more efficient than 

the estimators A̂ ,  B̂  and AB̂ .  In the same way, the estimators of the other parameters considered and 
obtained from the crossed model were found to perform better, from the relative efficiency point of views, 
than those obtained from the simple model. In short, we found that the proposed crossed model is always 
more efficient than the proposed simple model for all nine different parameters.  Details of these results are 
available in Lee (2011). 

 
5. Survey Data Application   
 

Sarjinder Singh organized a booth, STAT-HAWKERS, at the Joint Statistical Meeting, Miami Beach, FL 
during July 31 to Aug 3, 2011, to promote his research among the distinguished statisticians attending the 
conference (Figure 4.4). At the booth he displayed the ‘simple model’ and the ‘crossed model’ using a poster.  The 
problem of estimation of proportions of smokers, drinkers and both was considered using the proposed crossed 
model.  He made two decks of cards: Deck-I, a green deck of cards and Deck-II, a pink deck of cards.   Two types of 
cards bearing two different statements made up the green deck of cards:  56 cards with the statement, “I consider 
myself a smoker” and 24 cards with the statement, “I do not consider myself a drinker.”  Two types of cards bearing 
two different statements made up the pink deck of cards: 56 cards with statement, “I consider myself a drinker” and 
24 cards with the statement, “I do not consider myself a smoker.” During the three days, a total of 75 conference 
attendees participated in the survey. The respondents took an interest after being assured of their anonymity. The 
respondents were cooperative and smiling while drawing cards. Many participants also told that they felt like they 
were playing a card game. A two-way classification of 75 responses is given in the Table 5.1. By using the proposed 
crossed model estimators, the estimate of proportion of smokers is 0.240, 
that of drinkers is 0.360, and that of smokers as well as drinkers is 0.237. It 
seems that a smoker is likely to be a drinker, but a drinker may not be a 
smoker.  The estimate of correlation between smoking and drinking attitude 
is 0.733569. The estimate of the relative risk of a drinker to be a smoker is  

Table 5.1: Responses from the survey. 
 Pink Deck-II 
Green Deck-I Yes No 
Yes 13 14 
No 23 25 

140.44, which means a smoker is 140.44 times as likely to be a drinker than a non-user of both; whereas the estimate 
of the relative risk of a smoker to be a drinker is 6.10, which means a drinker is 6.10 times as likely to be a smoker 
than a non-user of both.  This study shows that 63.7% among the conference attendees had neither a drinking nor a 
smoking habit.  
 
6. Discussion 

In conclusion, we have created new and more efficient estimators of proportions of people possessing 
sensitive characteristics in a population and in the process have magically produced seven additional 
estimators of parameters involving the relationships between the two sensitive characteristics. 
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