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Introduction 

In this paper, it will be argued that probability, despite its pluralistic epistemology, has been portrayed 
in curricula in a narrowly defined manner. Such a view of probability has become increasingly irrelevant 
when school-level exploration of data is exploiting the use of technology to draw inferences that apparently 
tell the story behind the data without reference to probability. It is necessary therefore to stress in curricula 
an alternative meaning for probability, one that is closer perhaps to how probability is used by statisticians in 
problem-solving. In this paper, probability as a modelling tool is explored through new technological 
developments that offer opportunities to re-connect probability to reasoning about data and problem-solving. 

A pluralistic epistemology 

Probability and statistics have, at least until recently, been clearly connected since statistical analysis 
attempts to draw conclusions about uncertain situations. Yet probability as an idea is difficult to pin down as 
perhaps evidenced by the late development of probability as a formally defined piece of mathematics the 
ongoing controversies about what it means (Hacking, 1975): 

...we may readily confirm the fact that for all our advances in mathematical 
technology, a good many aspects of that dual concept of probability (frequentist and 
subjective) have been there from the beginning. The theories of today seem to 
compete in a space of possible theories that can be discerned even in the earliest years 
of our concept. (p. 16) 

The many ways of thinking about probability represent differing epistemological roots and 
applications.  Consider throwing a simple die. It is possible to identify a finite and countable sample space, 
and so, assuming independence and symmetry, a random variable might be defined classically by associating 
the outcomes [1, 2, 3, 4, 5, 6] with a probability of 1

6  in each case and comparing the number of favourable 
cases to number of possible cases. Alternatively, the frequentist view might regard the probability of a 6 on a 
die as the limit of the proportion of outcomes that are 6’s in an every increasing number of trials, observing 
experimentally that the proportion may be tending towards a limit of 1

6 . Third, probability might be seen as 
a rational measure of belief based on one’s knowledge of the a priori probabilities and the conditions of the 
experiment so that previous experience or theoretical analysis might have led to a prior belief that the 
probability of a 6 on a die is 1

6  but for a particular die this estimate may change in the light of further 
results. These strands in the development of the concept of probability can lead to different perspectives on 
some central ideas in this domain and, according to some researchers, a confusion amongst learners that has 
been labelled epistemological anxiety (Wilensky, 1997). 

Probability in the curriculum 

Perhaps such confusion cannot be entirely avoided in curricula; choices have to be made about which 
views of probability to stress and in what order. If we examine current curricula, it seems that the choice has 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS048) p.890



been made to present probability as either theoretical (such as in the first example above, the classical 
approach) or experimental (as in the second example, the frequentist view). 

At secondary level, the National Curriculum in the UK has focussed on (i) identifying finite countable 
sample spaces; (ii) relative frequency as an estimate of probability; (iii) the use of subjective estimations; (iv) 
the addition of probabilities for mutually exclusive events; (v) the multiplication of probabilities of 
independent events; (vi) the use of tabulation or tree diagrams for managing compound events. The examples 
in curriculum statements and textbooks are dominated by the use of coins, dice, spinners and drawing balls 
or sweets from a bag. This is not surprising since in such examples: a) the sample space is relatively easily 
identified, hence facilitating (i) above; b) experiments making few demands on equipment can be conducted 
in the classroom to demonstrate how the so-called experimental probability approximates the theoretical 
probability as in (ii) above; problems based around calculations that use the algebra of probabilities and 
representations such as tree diagrams are not difficult to invent to enable (iv), (v) and (vi). The reference to 
subjective probabilities in (iii) tends to be limited to encouraging students to associate 0 with the impossible, 
1 with the certain and values between with varying degrees of uncertainty. Subjective probabilities are 
quickly left behind once this numerical scale has been established and are certainly not subjected to algebraic 
manipulation. The notion that an experimental probability (relative frequency) approximates the theoretical 
probability positions probability ontologically as a thing which exists, even if only in the imagination, and 
which can be glimpsed, if somewhat unsatisfactorily, through experiments. 

This is not new. Probability is a relatively recent addition to the curriculum and although the extent to 
which probability has been seen as part of the primary school curriculum in the UK has varied over the last 
two decades (and is now almost non-existent again), there has been little variation in the position of 
probability in the secondary school curriculum. However, expectations around what we might expect from 
children when handling data are changing rapidly. The invention of new techniques in Exploratory Data 
Analysis (EDA) (Tukey, 1977) alongside developments in innovative software, such as Fathom 
(www.keypress.com/x5656.xml) and Tinkerplots (www.keypress.com/x5715.xml), have allowed researchers 
to explore how children can draw inferences from data without recourse to a classical understanding of 
probability. For example, Ben Zvi (2004) studied 13-year-old students in an experimental school as they 
sought to make comparisons between the lengths of English-American and Hebrew names. By studying in 
detail two students, Ben Zvi identified a number of developmental steps in how the students harnessed 
variability. These began with stages of where to focus attention, how to describe variability, conjecturing 
possible explanations for that variability and how to measure variability. 

The term informal inferential reasoning (IIR) has been coined to describe the learning processes, 
whether as a precursor to learning classical inference or as an essential piece of equipment for the modern 
statistically literate citizen, who needs to be able to reason with and about data. For example, Zeiffler et al 
(2008) offer one helpful definition that describes IIR “as the way in which students use their informal 
statistical knowledge to make arguments to support inferences about unknown populations based on 
observed samples” (p. 44). For example, a teaching approach first implemented by Bakker has been called 
growing samples (Bakker & Gravemeijer, 2004). A student might first collect data about themselves and 
close friends. The teacher might ask the student whether these data can be used to make predictions about  
the class. When the class data has been collected, a further challenge might ask whether predictions can be 
made about conclusions about the whole year of students, and so on, widening perhaps to the school and 
town etc. As the sample grows in tis approach so does the population but the focus remains throughout on 
whether inferences can be drawn about the population from the sample. 

Such approaches demonstrate how the statistics curriculum is responding to the opportunities offered 
by EDA, new technology and an understanding of IIR. Yet the probability curriculum is not changing. As a 
result, while the teaching and learning of statistics takes on an enquiry-based problem-solving stance, where 
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students act as data detectives, the pedagogy of probability is ever more isolated in its strange world of coins, 
spinners and dice as tools for demonstrating in a rough and ready way the existence of theoretical probability. 

Yet as argued above, there is a plurality of epistemologies for probability and as a result there are 
opportunities available for curricula to develop around different choices and emphases about how probability 
is presented. Note that, compared to some other curricula, such as those in Australia and the US, there is less 
emphasis in the UK on modelling and the social uses of chance (see Table 20.2, p. 914 in Jones et al, 2007). 
In Australia for example, gambling is perceived as a widespread problem and some educators have 
developed units around the teaching of probability with this social problem in mind. Perhaps this example 
illustrates how a modelling approach could facilitate the re-connecting of probability to statistics in such a 
way that probability becomes interesting to school students in its relevance to social issues (see also later 
when probability in risk is discussed). 

Probability as a modelling tool 

Biehler (1994) has argued: 

A major point is that the ontological debate of whether something ‘is’ deterministic or 
not may not be useful, rather, a situation can be described with deterministic and with 
probabilistic models and one has to decide what will be more adequate for a certain 
purpose. (p. 4) 

From this perspective, the behaviour of the coin, spinner or die can be seen as determined if only one 
knew enough about the many forces affecting their behaviour in which case the outcomes would be entirely 
predictable. In practice, this is an unlikely state of affairs and it is likely that one would be interested instead 
in adopting a probabilistic model. Hence, probability might be seen as a means for modelling the coins 
behaviour. 

In the journal, Teaching Statistics Volume 32, there was an interesting debate, which might be further 
informed by taking a modelling perspective on probability. Ridgeway and Ridgway (2010) challenged 
children to make sense of sequences of outcomes of tosses from a coin, which was, according to the 
researchers, fair. When inspecting a particularly unlikely sequence, one child asserted that the coin was 
perhaps not fair. This response was marked as ‘incorrect’. In his letter responding to the article, Goldstein 
(2010) argued inter alia that the researchers should not treat this response as wrong, claiming that he himself 
might well have given the same answer! The evidence provided might well lead to the inference that the coin 
was not fair in the same way that one might reject a null hypothesis. Ridgway and Ridgway presumably had 
in mind that even fair coins can generate freakish sequences of outcomes. Goldstein wanted to point out that 
coins should not be assumed to be fair since in practice throws may not be independent or indeed the 
probability at each throw may not be 1

2 . If probability were seen as a modelling tool, then the behaviour of 
the coin as witnessed might be modelled through a series of independent events with the probability of a 
head at each trial as 1

2  and occasionally freakish sequences will be observed, or alternatively the behaviour 
might be modelled as a series of trials with some degree of dependency and/or non-equiprobability. The 
exercise of choice by the student over how to represent the behaviour positions probability quite differently 
and arguably offers to the student more creative activity. 

Of course, if the modelling meaning of probability was stressed in the curriculum, it is debatable 
whether there is much advantage in maintaining the current emphasis on coins, spinners, dice and balls 
drawn from a bag. Perhaps, in days gone by when children played board games, there was some natural 
relevance in such contexts but, now that games take place in real time on screens, probability has much more 
relevance as a tool for modelling computer-based action and for simulating real-world events and 
phenomena. The claim here is that students would find much more purposeful building models with 
probability and that probability could take on new utility (Ainley et al, 2006). As a result, perhaps probability 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS048) p.892



could gain a similar level of meaningfulness as do statistical constructs when students explore data in EDA. 
The next two sections of this paper offer examples of recent developments in software that position 
probability as a modelling tool and through which exploring data and modelling with probability can be 
connected. 

Basketball 

http://people.ioe.ac.uk/dave%5Fpratt/Dave_Pratt/Software.html 

 

Figure 1: The player attempts to throw the ball into the basket by setting the sliders for release angle, speed, 
height and distance. 

Basketball was developed as part of Theodosia Prodromou’s doctoral thesis (2008). The notion was to 
explore two perspectives on distribution. It was anticipated that, because of the nature of the curriculum, 
secondary school students might articulate a datacentric perspective on distribution, as would be consistent 
with an EDA approach. An alternative view would be to recognise the probabilistic aspects of distribution. 
When statisticians posit variation in data as partially explained by main or higher order effects and 
unexplained variation as random error, they envisage a model of how the data are generated – out of various 
effects and random error. In a computer-based simulation, a probability distribution can take on the utility of 
generating data, akin to how the statistician envisages the model of the data. In her thesis, Prodromou built a 
computer-based simulation of a basketball player trying to throw the ball into the basket. Underlying the 
simulation was a mechanism for determining the trajectories of the balls. That mechanism could either be a 
determined system based on Newton’s Laws of Motion or a stochastic model based around a probability 
distribution, which allowed variation in the trajectories. She set out to design these tools as a window (Noss 
and Hoyles, 1996) on: (i) the datacentric perspective, which envisages distribution as a set of data about the 
trajectories; (ii) the modelling perspective, which imagines the probability distribution as generating the 
trajectories. Crucially, Prodromou was interested in whether and how students might connect the two 
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perspectives. 

Through a design research approach (Cobb et al, 2003), Basketball was developed in such a way that 
students (age 14-16 years) could attempt to throw an on-screen ball into a basket by setting parameters, such 
as release angle, release speed, height of throw and distance from basket (see Figure 1). In Figure 1, the 
arrows have been set to ‘ON’ for ‘Release Angle’ but remain ‘OFF’ for the other parameters. In fact, at the 
start, all arrows would be set to ‘OFF’. Under these circumstances, the path of the ball would be determined 
precisely by the parameter values. Once a successful throw had been found, all subsequent throws would 
continue along the exact same trajectory unless the parameters were changed. However, once the arrows 
have been switched ‘ON’ (for ‘Release Angle’ in Figure 1), there would be some random variation in the 
trajectories of the ball. The size of that variation is set by the distance between the two arrows, which can 
also be dragged to different positions on the slider. On the right hand side of Figure 1, there are two 
histograms and one line graph. The lower histogram shows the frequency with which any particular release 
angle was chosen randomly by the computer. The higher histogram shows how often throws of different 
release angles were successful. The line graph traces the overall success rate as the number of throws 
increases. The histograms provide data to allow inferences to be drawn about the best throws on the basis of 
a datacentric perspective. The handle of the slider points to the mean average value in the probability 
distribution that generates particular values for the release angle. The arrows point to the spread of that 
probability distribution. (It is also possible to introduce skewness by positioning the arrows asymmetrically.) 

In Prodromou and Pratt (2006), it is explained how the students harnessed ideas about causality to 
explain how the arrows ‘caused’ the balls to vary. In the thesis itself, Prodromou (2008) described two 
directions of connection between the datacentric and modelling perspectives. Some students regarded the 
probability distributing as emerging out of the data, a sort of target to which the data head. Others described 
the probability distribution as setting the intention before the data were generated. What is interesting about 
this work for the argument in this paper is that the Basketball simulation offers a way to think about how, by 
conceiving of probability as a modelling tool, there are opportunities within simulations for probability to 
have utility. In Prodromou’s work, the task is not to find the probability with which a successful basket 
might be made but to attempt to model realistic basketball throwing such that the player might be successful 
on some occasions but not always, and that the amount of error reflects the real performance of basketball 
players of various levels of skill. 

Tinkerplots 2 

www.keypress.com/x5715.xml 
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Figure 2: In Tinkerplots, the emphasis is on the case, which can be viewed as a card in a dataset (top left) or 
as a row in a table (bottom left) or as a graphical object (top right). In the bottom right, the cases have been 
organised by placing the attribute ‘Gender’ on the bottom axis and by stacking. 

Tinkerplots has been developed by a team led by Cliff Konold. Konold’s early interests were in 
probability where he developed a simulation tool called ProbSim. For many years, Konold’s focus switched 
to the challenge of EDA. Tinkerplots offered an intuitive interface for young children to explore how to 
organise and compress data through graphs and numerical measures. The emphasis is on the specific case, 
which can be viewed as a card in a data set or as a row in a spreadsheet-like table or an arbitrary graphical 
object on the screen. The cases can be organised and re-organised dynamically by the child who makes 
choices about what attributes of the data to position on one or two axes and whether to stack the objects (see 
Figure 2). 

More recently, Konold’s team have re-focused on probability by offering new tools that can exploit 
probability as a modelling tool. Tinkerplots 2 provides so-called samplers (see Figure 3). The sampler is 
essentially a non-conventional representation of a probability distribution and comes in several different 
forms. One option is that the student can choose to sample using a mixer (top left in Figure 3). Here the 
student decides what balls to place in the mixer and then one is chosen at random. Amongst the other options 
are the possibilities to set up a sampler as a spinner by defining the sizes of the sectors (top right), a 
histogram by setting the heights of the bars (bottom left), or a probability density function by drawing a 
curve (bottom right). Once a sampler has been established, it can be run as many times as desired to generate 
data which can then be organised and represented using the tools described above. 
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Figure 3: Four examples of samplers in Tinkerplots 2. 

Early research using these tools is providing very interesting data. In Konold et al (2007), students age 
12-14 years built ‘factories’ that generated people’s heights and measurement errors. They reported on a 
number of challenges such as how it was non-trivial for these students to conceive of objects as comprising a 
set of attributes. A case, such as a person, is a holistic entity and replacing this entity that can be perceived 
through all of our senses by a cluster of pieces of data was not a natural step, but an important one since it 
lies at the heart of modelling. Moving over to a modelling approach as advocated in this paper would bring 
along with it a set of new challenges and the study by Konold et al alerts curriculum designers to a 
fundamental one. Nevertheless, it is reasonable to argue that such difficulties need to be addressed in the 
modern world and are perhaps being hidden from view by current curricula approaches. In another study, 
Konold & Kazak (2008) provided middle-school students with a footprint supposedly left at a crime scene. 
Members of the class measured the length of the footprint and noted variation in their measurements, 
presumably due to error. 
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Figure 4: The mean average measurement is represented as a constant spinner and the measurements errors 
are represented as four independent spinners, which accumulate to give an overall error (Konold & Kazak, 

2008, Figure 2, p.8). 

They then used Tinkerplots 2 to model those errors using for example a set of four connected spinners, 
each of which contributed a value of ±0.1or0 to the most common measurement of 23.9 (see Figure 4). 
There was surprise that the distribution of data generated was not flat but peaked at 23.9. The students were 
able to explain after seeing the distribution generated that extreme measures were rather hard to obtain. 
Konold and Kazak discuss the role of signal and noise in this experiment. The mean value is one type of 
signal and the errors modelled by the spinners generate noise. However, when the model is run 60 times on 
three separate occasions, there is a stability in the peaked data distribution, which could also be regarded as a 
signal, and there is some variation in the detail of the shape, which could be regarded as noise. What we 
learn from this report is that a modelling approach to probability places distribution in the foreground but not 
as a fixed pre-determined truth but as an entity open to debate, a choice made by the modeller to create 
reasonable approximations of phenomena, where the nature of the approximation lies in the relationship 
between signal and noise. 

Conclusion 

The argument presented in this paper starts from the position that probability, more than any other 
school-level mathematical construct, offer a range of different epistemologies, which can be seen as a source 
of confusion for students but also as a set of choices for curriculum designers. In practice, currently the 
probability curriculum arguably reflects concerns and issues that were more relevant to earlier generations 
where the focus was almost entirely on classical inference and where coins, spinner and dice were clearly 
relevant to children. The position of probability in the school curriculum is being exacerbated by 
developments out of EDA in the statistics curriculum where there is a contrast between: (i) novel enquiry-
based approaches where data are mined to search for trends and patterns, and (ii) the probability curriculum 
where probability is presented as a fixed starting point from which various calculations can be made. 

A possible response would be for the probability curriculum to develop around the notion of 
probability as a modelling tool that could be used to build models in computer-based simulations, akin to the 
video-games that engage children and adolescents of today. Two examples of tools from recent research are 
offered. The Basketball simulation demonstrated how students might make connections between a 
datacentric and a modelling perspective on distribution by relating sliders that represent parameters of the 
probability distribution to the shape and position of histograms of data. Research with Tinkerplots 2 is 
beginning to collect examples of students using probability as a tool to describe variation in real or imagined 
phenomena. In so doing, some of the challenges in moving to a modelling-based probability curriculum are 
being identified. For example, students do not easily reduce cases to sets of attributes. 
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Figure 5: The possible consequences of Deborah having the operation are modelled by setting probabilities 
for the overall success-rate and for possible side-effects. When the model is run many times, it is possible to 
eyeball Deborah’s futures using the colour coded chart of possible outcomes. 

A modelling approach to probability would fit more comfortably with the use of statistics in disciplines 
other than mathematics and may enable statistics to be understood by students as a cross-curricular subject as 
well as a key idea in mathematics. Recent research on risk offers another avenue for probability as a 
modelling tool. Pratt et al (in press) have been researching mathematics and science teachers’ subject and 
pedagogical knowledge about risk, which has recently become a significant part of the science curriculum 
and an application of probability in the mathematics curriculum in the UK. They have developed a tool, 
called Deborah’s Dilemma (www.riskatioe.org/), in which the user is expected to example a complex 
scenario in which a young woman, Deborah, suffers from a back condition, which an operation might cure 
but which might result in minor or major consequences (such as paralysis or death). The user is able to 
model what might happen to Deborah by drawing on rich information about Deborah’s condition including 
sometimes-conflicting information from a range of different doctors and surgeons. The probabilities that the 
user might insert into the model are far from fixed. The values used will inevitably be compromises based on 
the information available and the consequences of making different choices can be explored in the simulator. 

Presenting probability in the curriculum as a modelling tool will inevitably bring with it certain new 
challenges in how children learn but these difficulties can be embraced as essential steps to overcome in the 
development of students who will engage fully in modern society. By connecting probability to statistics and 
to simulated and real phenomena, such a change in the curriculum reflects the use of mathematics and 
statistics in contemporary society and promises an enquiry-based pedagogy, which students are more likely 
to find purposeful and relevant. 
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ABSTRACT 
The teaching of probability and of statistics in secondary schools in the UK, as in most countries, takes place 
rightly or wrongly in mathematics classes. As the mathematics curriculum becomes increasingly influenced by 
software developments that facilitate a focus on drawing inferences by manipulating and representing data as in 
Exploratory Data Analysis, probability retreats into an isolated world of coins, dice and spinners. Secondary 
school students are not being encouraged to see the wider relevance of probabilistic thinking. Very recent software 
developments promise the re-connection of probability and reasoning about data by offering probability as a 
modelling tool. Opportunities are now available to review how these developments might redirect the curriculum 
including the wider and earlier use of probability as a subjective measure of chance. This paper will review some 
of these possibilities.  
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