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Measurement error is found in most of the variables used in social, behavioral and health sciences. 

Statistical analyses tend to omit it, and ignoring the measurement error can lead to biased estimates.  

Statistical methods based on the MCMC algorithm were recently proposed to adjust for measurement 

errors in multilevel models with normally distributed predictor and response variables. The estimation of 

multilevel model parameters involving polynomial terms with errors-in-variables calls for a nonlinear 

framework.  

We will present an extension of that MCMC algorithm involving a quadratic term. Value-added models 

applied to Portuguese data are used to illustrate the method. The survey design is longitudinal and consists of 

three waves - 2005/6, 2006/7 and 2007/8. Data were collected at the beginning and at the end of each 

academic year.  

 

Introduction 

Measurement error is found in most of the variables used in social, behavioral and health sciences. 

Ignoring measurement error and misclassification in the predictor variables of statistical models typically 

leads to biased parameter estimates and standard errors. Thus, a loss of power in detecting the impact of 

explanatory variables on the response is among the consequences. Despite the increasing efforts to encourage 

researchers to be more critical as regards measuring, and to adopt approaches to reduce such errors and their 

implications, most research papers ignore these, in part because the lack of available software that allows for 

the adjustment. A large statistical literature on the modelling of such errors exists, mostly dealing with the 

case of single level models (Fuller 2006, Carroll et al. 2006). However, the effect of measurement error in 

multilevel models has been far less explored. Woodhouse et al. (1996) presented an approach based upon 

moment type estimators in multilevel models but it does not apply to the case of random coefficients, where 

those coefficients are related to explanatory variables containing measurement errors. Browne et al. (2001) 

developed an algorithm using Markov Chain Monte Carlo estimation to deal with that case under the 

following assumptions: measurement errors are independent across explanatory variables; the measurement 

errors variances are assumed to be known; the unknown true values are assumed to have Normal 

distributions; the response variable is continuous. Goldstein et al. (2008) extend this work by allowing for 

covariances between measurement errors. The problem of categorical explanatory variables with 

misclassification is also addressed by those authors.  

The present paper is concerned with the effects of measurement error on a value added model specified 

as a function of several prior year scores with quadratic terms. All of them are measured with error. 

 

Value-added model and longitudinal data 

Numerous studies in school effectiveness have aimed at identifying the factors that explain differences 

across schools and at assessing the magnitude, consistency and stability of school contribution to student 

outcomes. It is now generally agreed that performance comparisons among schools should be based on the 
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value added by a school to the learning and development of each and every student. Thus, the family of 

statistical models that are employed to make inferences about the effectiveness of educational units, usually 

schools and/or teachers is known as value added models (Braun & Wainer, 2007). The evidence that is 

possible to estimate and compare the performance of institutions has had governmental implications on 

educational policies in several countries since there has been increasing interest in the accountability of 

public institutions. The measurement of such school or teacher effectiveness is crucial to the legitimacy of 

any school or teacher-based accountability system, particularly when it is used for high-stakes purposes. The 

debate has been focused on the theoretical but mainly methodological models and procedures to properly 

quantify the value added (e.g. Goldstein 1997, Raudenbush & Willms 1995, Goldstein and Spiegelhalter 

1996, Ladd & Walsh 2002, Fielding et al. 2003, Ballou et al. 2004, Leckie & Goldstein 2009, Ferrão & 

Goldstein 2009). The research on the impact of measurement error on value added estimates has not been 

extensive. Ladd & Walsh (2002) use prior grade test scores as instrumental variable to adjust generally for 

measurement errors. However, additional requirements must be set because the prior grade test scores are 

also measured with error.  

The statistical model considered here is a multilevel model for student’s performance in mathematics, 

specified as a function of several prior grade scores with quadratic terms, all measured with error. The 

student’s socioeconomic level is included as controlling variable. 

For illustration we use a sample of 338 students (208 enrolled in primary education and 130 enrolled 

in lower secondary education) from 40 classes/schools.  The data are derived from 3EM (Eficácia Escolar 

no Ensino da Matemática [School Effectiveness in Mathematics]) project1. The survey design is longitudinal. 

The population is defined by students enrolled in compulsory education in the region of Cova da Beira, 

a NUT III Portuguese region. Data were collected at the beginning and at the end of academic years 2005/6, 

2006/7 and 2007/8. Two cohorts of students were considered. In 2005/6 the 1st, 3rd, 5th, 7th and 8th grade 

students were involved. They were monitored in the 2nd, 4th, 6th, 8th and 9th grades, respectively, and a new 

cohort at the 1st, 3rd, 5th, and 7th grades was surveyed. In 2007/8 these students were monitored again. The 

random sample is representative at the level of county and NUT III region (Vicente, 2007). In 2005/6 the 

number of students involved from all grades was 1477 at the beginning and 1435 at the end. In 2006/7 total 

numbers were 3044 and 2947, respectively, and in 2007/8 the number of students was 2427 and 2370.  

The Portuguese Council for Data Protection gave permission to run the survey, but conditional on 

parents’ agreement. The initial sample was oversampled in order to take account of parents’ non-agreement 

and dropout or attrition, which is a known problem in longitudinal studies. The analyses of data collected 

over the first year show that the observed sample is still representative of the target population (Vicente 

2007).  

For the purpose of this paper we consider 3 years longitudinal data from two group of students; those 

students who, in 2005/6 started the 1
st 

grade and those enrolled at the 7
th
 grade, are followed up to their 3

rd
 

grade (208 students) and 9th grade (130 students), respectively. The hierarchical structure is students at level 

1 (indexed by i) nested in classes at level 2 (indexed by j). We use the following notation in describing the 

models. Let yt(ij) represent the mathematics achievement score (Ferrão et al. 2006) for the student i in school j 
at the end of grade t (t=3,9); let pl(ij) denote math prior score of student ij at the grade l (l=t, t-1, t-2,…) (P3, 

P2, P1 if primary education model; P9, P8, P7 if lower secondary education model). The pupil’s family 

socioeconomic status is represented by the level of education of parents (or responsible) and it is denoted by 

D.  

 

 

 

                                                      
1
 The research was made possible thanks to funding by the Portuguese Ministry of Science Technology and H

igher Education (2004-2007) and by the Calouste Gulbenkian Foundation (2006-2008). 
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For example, for primary education the model is specified by the following equation: 

         

 

 

where eij is the random component or error term at level one and u0j, u1j, u2j, u3j, u4j are random components 

at level two,     

 

 

 

 

 

 

 

 

 

 

 

Level 1 component is assumed to be independently distributed, according to a Normal distribution, and level 

2 components are assumed to follow a multivariate Normal distribution with zero mean and covariance 

matrix Ω5 . As we will show, most elements of this matrix are statistically equal to zero. 

The parameters to be estimated are , the fixed parameters, and , Ω5, the 

random parameters. Thus, equation (1) define a two-level random component model for the true grade 3 

mathematics score of each student (Yt), conditional on the true scores, obtained per each student at the end of 

grade 1 (P1), at the end of grade 2 (P2), and at the beginning of grade 3 (P3), and also conditional on the 

demographic variable parents’ education which is proxy for student’s socioeconomic status (D).  Response 

variable Yt and explanatory variables Pl, D are measured with error, so that we only observe a surrogate Yt*, 

Pl*, D* respectively. According to the assumption that we are able to obtain independent replications of Pl, 

for example, Pl1*, Pl2*,…, Plk*, here we will assume a functional model (Fuller 2006, p.2) such as the 

classical measurement model: 

 

 

 

 
 

where is the vector containing the errors of measurement, assuming that the error is non-

systematic, homoscedastic and , that is the true values and error 

measurement are not correlated. The assumption is that each true value  Errors of 

measurement are assumed to be uncorrelated as the covariance matrix is set to be diagonal. Further 
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research to allow off diagonal elements to be different from zero is in progress.  

For lower secondary education the model fitted is similar to the one described above. As we shall 

verify for both models, random components related to the slopes are not statistically different from zero. 

Thus, each model reduces to a variance component model. 

If the model is fitted with Y*, P*, and D* instead of Y, P and D the resulting estimates will be biased. 

 

MCMC estimation 

The algorithm described in Goldstein (2003, p.217) with the extension proposed by Goldstein et al. 

(2008) is used to estimate model parameters, considering also the classical measurement model for each 

explanatory variable as explained before. A small change in the algorithm was made for estimating the 

coefficient related to the quadratic term of the model. 

As described in the literature (e.g. Goldstein, 2003; p.56), the MCMC estimation proceeds, at each 

iteration, by considering each parameter in turn and generating a random sample from the distribution of that 

parameter assuming the current values of the remaining parameters. This procedure generates the conditional 

posterior distribution for each parameter to be estimated. Under general conditions, when the procedure is 

iteratively executed, the resulting chain of parameters can be considered as a random sample from the joint 

posterior distribution of the parameters. 

For a multilevel model with the adjustment of measurement errors, each iteration of the algorithm 

consists of eight steps: 

Step 1: Sample new set of fixed parameters ( ); 

Step 2: Sample new set of level 2 residuals ( ); 

Step 3: Sample new level 2 variance ( ); 

Step 4: Sample new level 1 variance ( ); 

Step 5: Sample new true values Pl from 

 

 

 
If l=3, after sampling the true value of , compute the true quadratic term, , to include it in 

the data matrix; 

Step 6: Sample a new mean for the true values from 

 

 

 
where n is the number of level 1 units; 

Step 7: Sample new variance parameter for the true values ( ); 

Step 8: Compute the level 1 residuals ( ). 

The estimates presented here consider a burn-in of 500 iterations and chain with 3000 iterations. 
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Results and Discussion 

Two analyses of the model for primary and lower secondary education data were conducted, showing 

the effects of considering the adjustment for measurement error in the predictor variables of prior 

achievement. In analysis A the reliability is considered to be R=1 and this produces the unadjusted results. In 

the analysis B the reliability is considered to be R=0.8 for each prior grade score t, t-1 and t-2.  

 

    Table 1. Unadjusted Estimates  Table 2. Adjusted Estimates 

 Primary Education 

Estimate (Standard error) 

Fixed Parameters A: R=1 B: R=0.8 

Intercept -0.041 

(0.097) 

-0.054 

(0.101) 

Grade 1 score 0.120 

(0.059) 

0.115 

(0.083) 

Grade 2 score 0.223 

(0.067) 

0.245 

(0.106) 

Grade 3 score 0.351 

(0.057) 

0.409 

(0.084) 

Grade 3 score ^2 0.071 

(0.032) 

0.092 

(0.047) 

SES 0.177 

(0.060) 

0.182 

(0.061) 

Random Parameters 

Level 1 0.506 

(0.053) 

0.471 

(0.057) 

Level 2 0.132 

(0.058) 

0.138 

(0.075) 
 

 Lower Secondary Education 

Estimate (Standard error) 

Fixed Parameters A: R=1 B: R=0.8 

Intercept -0.086 

(0.107) 

-0.124 

(0.111) 

Grade 7 score 0.417 

(0.094) 

0.572 

(0.194) 

Grade  8 score 0.166 

(0.085) 

0.078 

(0.171) 

Grade  9 score 0.285 

(0.084) 

0.333 

(0.113) 

Grade  9 score ^2 0.000 

(0.038) 

0.021 

(0.049) 

SES 0.069 

(0.056) 

0.067 

(0.058) 

Random Parameters 

Level 1 0.572 

(0.075) 

0.536 

(0.087) 

Level 2 0.065 

(0.050) 

0.0734 

(0.061) 
 

 

Table 1 summarizes the estimates obtained from primary education data. At this cycle of studies all the 

prior grade scores included are positive and statistically significant. It can be observed that the magnitude of 

the estimate tends to decrease as the time lag increases. Concerning the impact of the measurement error 

adjustment, with exception of estimate , all other estimates have their values increased when the 

adjustment for measurement error is made, as expected. Thus, for two students in the same class and with the 

same SES, the effect per point of difference in their grade one scores is, on average, 0.115 points on the 

outcome score at grade 3. The effect per point of difference in their grade 2 and grade 3 scores on the 

outcome is 0.245 and 0.409, respectively. The coefficient of the quadratic term is also statistically significant. 

The relationship between pupil’s socioeconomic status and his/her performance at the end of grade 3 is 

statistically significant ( =0.182).  

The estimates presented in table 2, for lower secondary education model parameters, from the 

substantive point of view show a pattern quite different from that one of primary education. However, from 
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the statistical point of view, the comments above mentioned remain valid. That is, in general, estimates of 

fixed parameters tend to increase as the measurement error is considered. The magnitude of the parameter 

estimate related to prior grade 7 score must be noted. After adjustment, its effect on the outcome at grade 9 is 

, on average, controlled by all other variables. It suggests that the pupil’s prior achievement at 

the entrance to lower secondary education works like a “filter” to his/her success at the end of this cycle of 

education. In addition, the model suggests that the parameter representing the relationship between student’s 

socioeconomic status and the achievement at the end of the cycle (which is the end of compulsory education) 

is not statistically significant. 

Level 1 variance estimates are reduced with the adjustment. Level two variance estimates change 

relatively little as a result of adjustment compared with those of level 1. Every standard error estimates 

increase when the adjustment is made. 

Since mathematics tests administered to students enrolled in contiguous grades included repeated 

items (for the purpose of scale equating), the assumption of independent measurement errors should be 

investigated. Specifically, a lag one serial correlation should be checked. Further analyses are in progress. 
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