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SUMMARY

Trend tests in proportion are developed under binomial and extra-binomial variability for linear and

non-linear dose-responses. Those tests employ orthonormal dose vectors and are proved to be score

test, or generalized score test. They are applied for designing biological monitoring systems using

water snails to detect the emergence of a toxic chemical in fresh water. Specifically, they are used for

selecting the 2×K table from a×K tables (a ≥ 3) that shows the strongest dose-response relationship

among other 2×K tables.

Keywords binomial distribution; Cochran-Armitage test; generalized score test; Gram-Schimdt

orthonormalization; orthonormal dose score; over dispersion.
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1 Introduction

The present paper is concerned with an experiment for designing biological monitoring systems using

water snails to detect the emergence of a toxic chemical in fresh water. Figure 1 shows an image of

the monitoring system envisioned. The experiment is briefly described as follows. Adult freshwater

snails (mean [± SD] of total length, 31.6± 1.3 mm) that were collected from Inose stream, Fukuoka,

Japan, were kept under a photoperiod (12:12-h light:dark) for six months, and fed with artificial diet

once a day were used in the experiment. They were exposed to copper sulfate (CuSO4; > 98% purity;

0, 0.1, 1 and 10 mg/L) in each chamber for 6 days that contained each level of test solution. The test

solution in test chamber was changed once a day. See Kang et al. (2009) for details of the experiment.

Figure 2 shows five typical behavioral patterns of snails in water, from the stage of movement to

the stage of withdrawal of the body into the shell, showing the levels from ’feeling well’ to ’perceived

risks’; more precisely, movement (M), adhesion and cessation of muscular activity (AC), detachment

and muscular activity (DM), detachment and cessation of muscular activity (DC), withdrawal of the

body into the shell (W). We consider those stages as ordered categories in this paper and call them

simply as M, AC, DM, DC and W. The question asked is which behavior is the sharp indicator of the

emergence of CuSO4, a well known toxic chemical.

Table 1 summarizes the data by doses and behaviors obtained in the experiment. The question

may be statistically formulated as follows. As there are four possible classifications of categories into

two, namely, (M1): {M} vs. {AC, DM, DC, W}, (M2): {M,AC} vs {DM, DC, W}, (M3): {M, AC,

DM} vs {DC, W}, and (M4): {M, AC, DM, DC} vs. {W}, which one among those four is the most

sensitive for detecting the emergence of the chemical compounds.

Now, if we select a cut-off point in lower categories, it is often the case that resulting 2 × k

tables show increasing trends of dose-response curves, but downturns are observed at higher doses

when the cut-off point is selected in higher categories. Furthermore, data are potentially subject to

over-dispersion since there might exist substantial day to day variation.

Cochran-Armitage (C-A) test (Cochran, 1954: Armitage, 1955) has been applied for detecting

the trend of dose-response in proportions. However, if the data shows increasing fashion over low

doses, but downturn in higher doses, the C-A test could lose powers for detecting the dose-response,

as was pointed up by Simpson and Margolin (1986). Also it loses validity when over dispersion exists.

It is the purpose of the present paper to develop a method of collapsing categories in a×K table

(a ≥ 3) to get 2×K table that shows the strongest dose-response relationship among other collapses.

We take different approach from Simpson and Margolin (1986). The problem is mathematically

formulated in Section 2, score and generalized score tests (Boos, 1992) for linear and non-linear trends

under potential existence of over-dispersion will be developed in the same section. Finally, the method

will be applied to the data in Table 1.

2 Trend test

2.1 Assumptions and the problem

Consider a dose response experiment, where nij is the number of subjects (snails) that are administered

dose di at jth day, i = 1, 2, . . . , k; j = 1, 2, . . . , mi. Denote by Yij/nij the proportion of specified

response. Assume that {Yi1, Yi2, . . . , Yimi} and {Yi′1, Yi′2, . . . , Yi′mi′} are independent for i �= i′ and
d1 < d2 < · · · < dk. Let πi represents the response probability at di. Our goal is to test

H0 : π1 = π2 = · · · = πk
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against H1 that postulates a linear or nonlinear trend in π’s. Mathematical representation of H1 will

be given below.

2.2 Orthonormal dose vector

Let a dot in subscript denote the summation over that subscript, hence ni· =
∑mi

j nij, Yi· =
∑

j Yij
and so on. For i-th dose di, put

ci = di − d̄,

where

d̄ =
∑
i

dini./n··,

and consider vector

c1 = (c1, c2, · · · , ck).
Define

cs = (cs1, cs2, · · · , csk)′,
where csi = csi (sth power of ci ) for s = 1, 2, · · · , r. Also define inner product of two vector by

(a,b) =
∑
i

aibini

and its norm by

‖a‖ =
√
(a, a).

It is obvious that (c0, c1) = 0 and that c0, c1, · · · , cr are linearly independent.

Let a0, a1, · · · , ar be orthonormal vectors obtained by applying Gram-Schimdt orthonormaliza-

tion to (c0, c1, . . ., cr) with respect to the innner product, that is

a0 =
c0
‖c0‖

d∗
s = cs −

s−1∑
h=0

(cs, ah)ah

as =
d∗
s

‖d∗
s‖

so we have

(as, al) =

{
0 if s �= l

1 if s = l

and ‖as‖ = 1 for all s = 0, 1, · · · , r. We call a0, a1, · · · , ar the orthonormal dose score vectors.

2.3 The null and alternative hypotheses

Using orthonormal dose score vectors as = (as1, as2, · · · , ask)′, we introduce a logistic model by

log
πi

1− πi
=

r∑
s=0

βsasi,

where βs, s = 1, 2, . . . , r, are unknown parameters. Putting β(2) = (β1, · · · , βr)′, the null and alterna-

tive hypotheses for linear and non linear trend may be represented by

H0: β(2) = 0 and H1: β(2) �= 0.
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2.4 Trend Test under Binomial Variability

Suppose that Yij follows binomial distributionB(nij , πi), i = 1, · · · , k. For testingH0 vs H1 we propose

a trend tests based on statistics

TSr =
r∑

s=1

(
∑

i asiYi.)
2

Ȳ (1− Ȳ )
, r = 1, 2, · · ·

where Yi. =
∑mi

j=1 Yij , Y·· =
∑k

i=1 Yi., n·· =
∑k

i=1

∑mi
j=1 nij, Ȳ = Y··/n·· and asi is the ith element of the

orthonormal dose score vector as. It may be shown similarly as Jayasekara et al. (1999) that under

H0 the summands of TSr are mutually uncorrelated and that TSr follows a chi-square distribution

with r degree of freedom, asymptotically. When r = 1, TSr is written as

S1 =
(
∑

i a1iYi·)2

Ȳ (1− Ȳ )

which is easily shown equivalent to the statistics of the C-A test. When r = 2 TSr is written as

S2 =
2∑

s=1

(
∑

i asiYi·)2

Ȳ (1− Ȳ )
.

We call the test based on this statistics the S2 test. We may prove the following proposition.

Proposition 1 TSr is the statistic of the score test for testing H0 against H1. TSr follows a

chi-square distribution with r degree of freedom under H0, asymptotically.

Proof The log likelihood function is represented by,

�(β) = c+
∑
i

∑
j

yij(
r∑

s=0

βsasi)−
∑
i

∑
j

nij log(1− (1 + exp{−
r∑

s=0

βsasi})−1)

where β = (β0, β1, · · · , βr) and c is a constant term. Thus the proof of the proposition is immediate.

2.5 Trend test under over-dispersion

Boos(1992) introduced the generalization of score test that able to account for certain model inade-

quacies or lack of knowledge by use of empirical variance estimates. We apply his idea to obtain trend

test when data are subject to over-dispersion. We have the following theorem.

Proposition 2 For orthonormal dose vector as = (as1, as2, · · · , ask)′, s = 1, 2, · · · , r, put

S =

(
K∑
i

a1iYi·, · · · ,
K∑
i

ariYi·

)′

and

D =

⎛
⎝ K∑

i

mi∑
j=1

(Yij − nijȲ )2atiaui

⎞
⎠

r×r

.

Then

TGSr = S ′D−1S

is the generalized score test for testing H0: β(2) = 0 vs. H1: β(2) �= 0. TGSr follows chi-square

distribution with r degree of freedom under H0, asymptotically.

(The proof of the theorem is given in Appendix.)
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When r = 1, TGSr is written as

GS1 =
(
∑K

i a1iYi·)2∑K
i a21i

∑mi
j=1(Yij − nijȲ )2

which is easily shown equivalent to the generalized C-A test (Carr and Gorelick , 1995), thus has high

power in detecting linear trend. We call the test based on GS1 the gC-A ( generalized C-A ) test.

When r = 2 TGSr is written as

GS2 =
( ∑K

i a1iYi·,
∑K

i a2iYi·
)( v11 v12

v21 v22

)−1 ( ∑
i a1iYi·∑
i a2iYi·

)

where

vsl =
K∑
i

asiali

mi∑
j=1

(Yij − nij Ȳ )2

We call the test based on this statistics the GS2 test. We propose it for testing H0 : π1 = · · · =

πk against a convex trend. Note that no specific distribution is assumed for the generalized score

test. However, in below we examine the behaviour of the GS1 and GS2 tests under beta-binomial

distribution, assuming that {Yij}j=1,···,mi are independent and Yij follows,

P (Yij = y) =

(
nij

y

)
Γ(y + (πi/ϕ))Γ(nij − y + (1− πi)/ϕ)Γ(1/ϕ)

Γ(πi/ϕ)Γ((1− πi)/ϕ)Γ((1/ϕ)+ nij)
,

where ϕ is the dispersion parameter.

3 Numerical Evaluation

We consider linear or quadratic responses shown in Table 1. We call the response patterns of No. 1,

2, 3 and 4 in Table 2, the uniform, convex, concave and increasing monotone response, respectively.

Performance of the C-A test, S2 tests gC-A test GS2 tests are examined in terms of the Type

I error and powers for detecting the true patterns by simulation. We consider two beta-binomial

distributions with response probabilities given in Table 2 and with the value of dispersion parameter

ϕ 0.1 and 1, respectively. The significance level is taken as 0.05. 10,000 data are generated from each

distribution, and empirical Type I errors and the powers are computed when nij = 10, i, j = 1, 2, . . . , 5.

Table 3 summarizes the results. The table indicates the following results;

1. When an over-dispersion exists, the sizes of C-A and S2 tests substantially inflate. The powers

of those tests are remarkably high, but those powers loose the validity since the inflation of the

sizes of tests.

2. On the other hand sizes of gC-A and GS2 tests are kept near the nominal level (5% in the table)

whether an over-dispersion exists or not.

3. The gC-A has higher power than the GS2 test for monotone increasing trends, but has lower

power than the GS2 test for convex alternatives that include down-turns at high doses.

4 Application

Values of C-A, S2, gC-A and GS2, and also their p-values, computed from Table 1 are listed in Table

4. The table shows that all p-values in the table except gC-A at M4 are less than 5%, confirming that

CuSO4 is a toxic chemical compounds. It also shows that p-values of C-A and S2 tests are extremely
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small, indicating the existence of over-dispersion, and p-values of these test should not be taken into

account seriously. p-values of gC-A at M3 and at M4 are almost equal, p-value of GS2 at M2 and at

M3 are almost equal, and it is not easy to select M2 and M3, but we selected M3 based on the p-value

of GS2, that is 0.0033. It is suggested to classify four categories into {M, AC, DM} vs. {DC, W} and

employ GS2 test for detecting the emergence of the chemical in the biological monitoring system.

Appendix

Proof of Proposition 2

Let

S = S(β) =

(
∂�(β)

∂βt

)
(r+1)×1

IY = IY (β) =

(
− ∂2�(β)

∂βt∂βu

)
(r+1)×(r+1)

DY = DY (β) =

(
∂�(β)

∂βt

∂�(β)

∂βu

)
(r+1)×(r+1)

Reperent S ′ = (S ′
(1), S

′
(2)) , where S(1) is 1× 1 and S(2) is r × r. The matrices above are partitioned

accordingly, e.g., IY (11) is 1× 1, IY (12) is 1× r and so on. For testing H0 : β(2) = 0 vs H1 : β(2) �= 0,

Boos (1992) proposed generalized score test as:

TGS = S̃ ′
(2)Ṽ(S̃(2))S̃(2) (A1)

where ·̃ denote those matrices evaluated at β = β̃, and β̃ is restricted mle of β under H0, and

Ṽ(S̃(2)) = D̃Y (22) − ĨY (21)Ĩ
−1
Y (11)D̃

′
Y (21) − D̃Y (21)Ĩ

−1
Y (11)Ĩ

′
Y (21)

+ ĨY (21)Ĩ
−1
Y (11)D̃Y (11)Ĩ

−1
Y (11)Ĩ

′
Y (21)

Since as = (as1, as2, · · · , ask)′, s = 1, 2, · · · , r are orthonormal, it follows that ĨY (21) = Ĩ ′Y (12) = 0. Thus

we have Ṽ(S̃(2)) = D̃Y (22). Furthermore, a straightforward computation shows that

S̃(2) =

(∑
i

a1iYi·, · · · ,
∑
i

ariYi·

)′

Thus submitting those equation to (A1) we have the desired result.
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Figures and Tables

Figure 1: Biological monitoring system

Figure 2: Five stages of snails
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Table 1: Behavior of snails in the experiment

day dose M AC DM DC W Total

1 0 7 0 0 0 1 8

0.1 4 3 0 0 1 8

1 0 0 0 0 8 8

10 0 0 0 0 8 8

2 0 2 2 1 1 2 8

0.1 0 0 0 0 8 8

1 0 0 0 0 8 8

10 0 0 0 0 8 8

3 0 5 1 0 1 1 8

0.1 0 3 0 1 4 8

1 0 0 0 0 8 8

10 0 0 0 2 6 8

4 0 6 0 0 0 2 8

0.1 0 0 0 0 8 8

1 1 0 0 0 7 8

10 0 0 0 3 5 8

5 0 5 2 0 0 1 8

0.1 0 0 0 0 8 8

1 0 0 0 2 6 8

10 0 0 0 2 6 8

6 0 6 0 0 0 2 8

0.1 0 0 0 0 8 8

1 0 0 0 1 7 8

10 0 0 0 1 7 8
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No. π1 π2 π3 π4 π5 Response Patterns

1 0.2 0.2 0.2 0.2 0.2 uniform

2 0.2 0.2 0.27 0.4 0.6 increasing monotone

3 0.2 0.45 0.8 0.6 0.5 convex

4 0.8 0.6 0.5 0.5 0.6 concave

Table 2: Trend patterns of population probabilities

Binomial C-A S2 gC-A GS2

Type I error 0.051 0.051 0.050 0.037

monotone increasing 0.997 0.997 0.989 0.954

convex 0.938 1.000 0.682 0.992

concave 0.634 0.919 0.452 0.747

Beta-Binomial (φ = 0.1) C-A S2 gC-A GS2

Type I error 0.143 0.185 0.048 0.036

monotone increasing 0.983 0.985 0.891 0.767

convex 0.873 0.999 0.499 0.908

concave 0.607 0.877 0.316 0.503

Beta-Binomial (φ = 1) C-A S2 gC-A GS2

Type I error 0.406 0.599 0.040 0.029

monotone increasing 0.891 0.934 0.484 0.350

convex 0.758 0.971 0.243 0.522

concave 0.600 0.847 0.150 0.239

Table 3: Trend patterns, Type I errors and powers

C-A S2 gC-A GS2

M1 18.90 46.79 6.06 8.75

(1.4E-05) (6.9E-11) (0.014) (0.013)

M2 26.47 64.48 6.97 11.23

(2.7E-07) (1.0E-14) (0.0083) (0.0037)

M3 27.24 66.57 7.04 11.43

(1.8E-07) (3.6E-15) (0.0078) (0.0033)

M4 10.26 41.66 3.75 8.89

　　 (0.001) (9.0E-10) (0.053) (0.012)

Table 4: Values of statistics and their p-values in the blankets

M1; {M} vs. {AC, DM, DC, W}, M2; {M,AC} vs {DM, DC, W},
M3; {M, AC, DM} vs {DC, W}, M4; {M, AC, DM, DC} vs. {W}
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