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Abstract

The prediction of financial distress and bankruptcy has been re-

cently characterized as one of the more important problem facing both

business and government. In this manuscript, a simple method based

on boundary crossing probability of working capital process for pre-

dicting bankruptcy in median or small business is introduced. The

method is based on finite Markov chain imbedding technique. A set

of data from 183 manufacture companies of USA has been used to il-

lustrate the method. The same data is also used to compare it against

the more traditional methods: Altman’s (1968) multivariate discrim-

inant analysis and Ohlson’s (1980) logistic regression. The numerical

results show the proposed method performs very well.

1 Introduction

Bankruptcy in a company is an event that can produce substantial losses for

owners, creditors, investors and workers. It can result in a chain reaction

that affects other businesses and potentially becomes a social and economic

problem for both the government and community. Financial bankruptcy

prediction models can help to reduce such losses by providing the earliest

possible warning to interested parties. Then action can be taken, such as

cost cutting, or refinancing, or restructuring or even a merge with another

company, in order to stave off bankruptcy.

According to Altman (1993), the first statistical study on business failure
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was done in 1935 by Smith and Winakor during the great depression and

then by Meravin (1942). Beaver (1966) applied the uni-variate discriminant

analysis (UVDA) using financial ratio to predict business failure. Altman

(1968) extend Beaver’s UVDA into multi-variate linear discriminant analysis

(MLDA) using five financial ratios from company’s financial statements for

predicting business failure. The method was often referred as Z-score. It

could be described as finding a linear discriminant function

Z = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 (1)

with ratios x1 = working capital/total assets, x2 = retained earnings/total

assets, x3 = sales/total assets, x4 = earning before interest and tax/total

assets, and x5 = market value of equity/total debt. These ratios are avail-

able from quarterly financial statement given by the company. In another

word, the method is accounting based. The method has high accuracy in

predicting at one year, and the decline in accuracy was significant. He also

found the working capital ratio to be the only significant predictor of business

failure. Ohlson (1980), Lo (1986) and Theodossiou (1993) proposed to use

logistic regression for predicting business failure. Mathematically, the logistic

regression method can be described as follows:

y = log
p

1− p
=

N∑
j=1

βjxj (2)

where p is the failure probability of a company and y is log of odds ratio

and linear regression on covariates xj, usually financial ratios. Lo (1986)
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and Theodossiou (1993) made claims that the logistic regression model with

proper selecting the predictors performs at least as well as multivariate linear

discriminant analysis.

Apart from above mentioned two popular statistical methodologies, it is

also worth mentioning several others and recent development. For example

Odom and Sharda (1990) proposed to use a neural network method to pre-

dict business failure. They showed that the neural network methodology is

more robust than multivariate linear discriminant analysis. Bryant (1997)

proposed a case-based seasoning approach to bankruptcy prediction. Mckee

(2000) developed a bankruptcy prediction model via the rough set theory.

Recently Vassalou and Xing (2004) proposed a stochastic method study-

ing the probability of default risk in equity returns. Hillegeist et al (2004)

extended the method to assess the probability of bankruptcy. The method

is based on the well-known Black-Scholes-Merton option pricing model. The

probability of bankruptcy during the period [0, T ] is defined as the probabil-

ity that the market value of assets, VA(t), is less than the face value of the

liability X at time T ; i.e.

P (VA(T ) < X), (3)

where VA(t) is the market value at time t ∈ [0, T ] and log VA(t) is normally

distributed

log VA(t) ∼ N(log VA(0) + (µ− δ − δ2

2
)t, σ2

A(t)), (4)

VA(0) is current market value of assets, µ stands for the expected return
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on assets, δ is dividend rate and σA(t) is the volatility of asset returns. In

order to enumerate the probability of bankruptcy, they used the European

call option equation to estimate the parameters µ, δ and σA, and suggested

the threshold X equals current liabilities plus 1/2 of long term liabilities

which drew from Vassalou and Xing (2004). For application, this method has

several drawbacks: (i) it is only applicable for companies which have options,

(ii) the companies having options are usually large and stable companies, and

(iii) the option prices are often biased in favorite of stock firm.

In this manuscript, we propose a stochastic method based on modeling

the working capital as a Brownian motion with drift. The probability of

bankruptcy is cast as boundary crossing probability (BCP) of working capital

process X(t) crossing the threshold X0 in the time period [0, T ]. Finite

Markov chain imbedding technique by Fu and Lou (2003), and result by

Fu and Wu (2010) are used to obtain the BCP. Numerical performance of

proposed method has been carried out and compared with MLDA and LR

to illustrate the theoretical result.

2 Stochastic Modeling Working Capital

As pointed out by Altman (1968), the working capital ratio is the only sig-

nificant predictor among all the ratios for predicting business failure. We

model the working capital X(t) following a Brownian motion:

X(t) = µt + σtW (t) (5)
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for the time period [0, T ], where µt is the trend (drift) of the working capital,

σt is volatility of the working capital and W (t) is standard Brownian motion.

Under the above model, the probability of bankruptcy for a company in a

time period [0, T ] is defined as boundary crossing probability that the working

capital X(t) is less than the threshold X0; i.e.

P (X(t) < X0, for some t ∈ [0, T ]). (6)

It follows from eq. (5) the above boundary crossing probability equals to

boundary crossing probability of standard Brownian motion with non-linear

boundary

P (W (t) <
X0 − µt

σt

, for some t ∈ [0, T ]).

Given the parameters µt and σt and the threshold X0, using the finite Markov

chain imbedding technique and recent result of Fu and Wu (2010) the above

probability of bankruptcy can be computed via the following theorem.

Theorem 2.1. There exists a family of homogeneous Markov chains {Ŵn(t)}

such that

(i) Ŵn(t)
D→ W (t), as n →∞, for all t ∈ [0, T ],

(ii) given two boundaries a(t) < b(t)∀t ∈ [0, T ], and a(0) < 0 < b(0), then

P (W (t) ≤ a(t) or W (t) ≥ b(t), for some t ∈ [0, T ])

= 1− lim
n→∞

ξo

(
n∏

i=1

Ai

)
1

′
, (7)
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where
D→ stands for convergence in distribution, ξ0 is initial probability

P (X(0) = c) = 1, and Ai are essential transition probability matrices

of Markov chain {Ŵn(t)} with boundaries a(t) and b(t) as absorbing

states, and

(iii) |P (a(t) < W (t) < b(t),∀t ∈ [0, T ])− ξ0 (
∏n

i=1 Ai)1
′| ≤ C√

n
,

where C is an unknown constant.

We will neither show how to construct the family of Markov chains nor

prove the results here. The construction and proof will be given in appendix.

For the one-sided boundary crossing probability, we take a(t) = −H and

H → ∞ (or b(t) = H and H → ∞) in our computation. This method will

be referred as boundary crossing probability method (BCPM).

3 Numerical Comparison

In order to check the performance of proposed BCPM, the following numer-

ical comparison with LR and MLDA is carried out using a set of US data

which consists of 183 small manufacturing companies with revenues less than

$20 million. The working capital data was gathered for years 2001 to 2006

from quarterly financial statements.

For the MLDA and LR, five ratios were used for equations (1) and (2)

to predicting the bankruptcy, respectively. For BCPM, we assume that the

trend of working capital is linear µt = α+βt and volatility is constant σt = σ
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Table 1: Comparison of misclassification rates of the BCPM with X0 =

−2TA, MLDA and logistic regression methods with small-sized companies

Prediction (T=-2TA) 1-Year Prediction (2004) 3-Year Prediction (2006)

Methods BCPM LR MLDA BCPM LR MLDA

Mis/Total ] of Non-Failed 0/93 2/93 26/93 2/73 4/73 26/73

% Misclassification Rate of Non-Failed 0% 2.15% 27.95% 2.74% 5.48% 35.61%

Mis/Total ] of Failed 5/14 11/14 5/14 23/34 28/34 14/34

% Misclassification Rate of Failed 35.71% 78.57% 35.71% 67.64% 82.35% 41.17%

Total Misclassification Rate 35.71% 80.72% 63.67% 70.39% 87.83% 76.79%

for the period [0, T ]. Least squares estimators α̂, β̂, and σ̂ with threshold

X0 = −2×total asset (−2TA) were needed for computing the probability of

bankruptcy using eq. (7) for each company. If the predicted probability of

bankruptcy is greater than 0.5 we define the company failed and otherwise.

The following Table 1 provides the performance of three methods for 1-year

and 3-year predictions in terms of two types misclassification rates (type I

and type II errors) and also the total misclassification rate.

Clearly, the BCPM performs much better than both MLDA and LR in

both the 1-year and 3-year predictions. Particularly, the performance of

BCPM is significant better in both Type I and Type II errors than other

two methods. One may note that the misclassification rates of all three

methods increase considerably from 1-year prediction to 3-year prediction.

This implies the applications of any of those methods should not be extended

beyond a 3-year period.
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In view of simplicity in structure and better performance of BCPM, we would

like to provide further technique remarks to lighten the method:

(i) Theoretically speaking, one should select the threshold X0 which min-

imizes the sum of type I and type II errors, or linear combination of

two types of errors for each company. Practically this is impossible

due to the fact that no data is available for estimating the threshold.

The threshold X0 = −2×total asset is selected empirically which mini-

mizes the sum of observed type I and type II errors of the group of 183

companies.

(ii) It seems that the BCPM can be extended to involve two or more vari-

ables, for example working capital and cashflow, which may perform

better than univariate BCPM. However selecting threshold and finding

the boundary crossing probability for non-linear boundaries for two or

high dimension Brownian motion remains a hard and challenging task.

(iii) One may note that the 183 manufacture companies in our study are

relatively small business. Actually the method is expected to work

for the median or large size companies. The group of companies in the

study should be more or less homogeneous in structure, otherwise using

the same threshold for all the companies may produce poor results.
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