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Pötzelberger Klaus
Vienna University of Economics, Institute for Statistics and Mathematics
Augasse 2-6
A-1090 Vienna, Austria
E-mail: Klaus.Poetzelberger@wu.ac.at

1 Introduction

Let (Wt)t≥0 be a standard Brownian motion starting from 0, T > 0 a fixed time-horizon, a(t) and
b(t) real functions (boundaries) satisfying a(t) ≤ b(t) for all 0 < t ≤ T and a(0) < 0 < b(0). In this
paper, we are concerned with Monte Carlo methods for computing the following boundary crossing
probability (BCP)

P (a, b) = P (a(t) < Wt < b(t),∀t ∈ [0, T ]) ,(1)

or, in the one-sided case,

P (b) = P (Wt < b(t),∀t ∈ [0, T ]) .(2)

The BCP for a diffusion process(Xt), i.e. the solution of the stochastic differential equation

dXt = µ(t, Xt)dt + σ(t,Xt)dWt, X0 = x0,(3)

is in its general form

P (a, b;h) = E[h((Xt)0≤t≤T )I(a(t) < Xt < b(t), ∀t ∈ [0, T ])],(4)

where h is an integrable function of (Xt)0≤t≤T .
Computing boundary crossing probabilities is of considerable importance in various fields, such

as sequential methods in statistics (Siegmund 1985). A prominent example in financial mathematics is
the pricing of barrier options. The derivative pays a payoff at maturity if the underlying never crosses
a barrier (knock-out option) or only if it crosses the barrier (knock-in option). In credit risk analysis
an interesting approach is to assume that a firm issuing a bond defaults in case its value crosses below
a boundary (Roberts and Shortland (1997), Beibel and Lerche (1997), Lin (1998)).

Unfortunately, there are very few boundaries for which the BCP can be computed in closed
form. For the linear boundary Doob (1949) derived the one-sided BCP, for quadratic boundaries and
square-root boundaries series expansions or results on the Laplace transform of the density of the
hitting time exist. For Daniel’s boundaries the BCP may be computed explicitly, see Daniels (1969).
Lerche (1986) has more on the method of images and a list of boundaries for which the BCP can be
computed analytically.

Therefore in most cases one has to resort to numerical methods to compute a BCP approximately.
Popular approaches derive the BCP as a solution of a differential or an integral equation (Ricciardi et
al. (1984), Loader and Deely (1987), Sacerdote and Tomassetti (1996)) or use numerical quadrature,
see Novikov et al. (1999).

The methods we propose and analyze are based on approximating the boundary b (by a piecewise
linear boundary bm and estimating the BCP for bm by a MC (Monte Carlo) method. m is the number
of intervals on which bm is linear. Steps that lead to a highly efficient procedure are presented in the
subsequent sections.
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The central topic of the paper is the MSE (mean squared error) of the MC procedure in terms of
N , the number of univariate random variables used. Typically for infinite-dimensional methods, the
rate of the MSE is O(1/Nβ) with β < 1. We present the adaptive control variables approach to reduce
the variance of the MC estimators. Convergence rates of the MSE are derived. Approximating the
control variables themselves by control variables leads to iterated adaptive control variables, leading
to a MSE of order O(1/N). A numerical example emphazises the usefulness of the proposed approach.
Proofs and technical details are skipped, but may be obtained from the author

2 Monte Carlo Estimation

2.1 Piecewise Linear Boundaries

In this and the next section we propose MC estimators for the boundary crossing probability of a
standard Brownian motion (Wt)0≤t≤T . Let b and a denote functions [0, T ] → R with a(0) < 0 < b(0)
and a(t) ≤ b(t) for t ∈ [0, T ]. Furthermore, assume that b and a are primitives, i.e. that measurable
functions b′ and a′ exist, such that for all t ∈ [0, T ], b(t) = b(0)+

∫ t
0 b′(s)ds and a(t) = a(0)+

∫ t
0 a′(s)ds.

For a linear boundary b(t) = α+βt with α > 0, we have for the one-sided BCP (Φ and φ denote
the cdf and the pdf of the standard normal distribution),

P (b) = Φ
(

α + βT√
T

)
− Φ

(
βT − α√

T

)
e−2αβ.

This result follows from the BCP of the Brownian bridge

P (Wt ≤ b(t), ∀t ∈ [t0, t1] | Wt0 = wt0 ,Wt1 = wt1) = 1− exp
{
− 2

t1 − t0
(b(t0)− wt0)(b(t1)− wt1)

}
.

Pötzelberger and Wang (2001) used this result to construct a MC procedure for piecewise linear
boundaries. Let b be linear on [ti−1, ti], i = 1, . . . , m, where 0 = t0 < t1 < · · · < tm = T is a partition
of the interval [0, T ]. Let ∆ti = ti − ti−1. Then

P (b) = E[gm(Wt1 , . . . ,Wtm)],

gm(wt1 , . . . , wtm) =
m∏

i=1

(
1− exp

{
− 2

∆ti
(b(ti−1)− wti−1)(b(ti)− wti)

})
I(wti < b(ti−1)).(5)

2.2 Conditional Estimator

A possible approach to estimating the BCP by a MC procedure is as follows. Approximate the
boundary b by a boundary bm, which is linear on m intervals. Generate n discrete paths (W k

ti)i=1,m, k =
1, . . . , n, of the Brownian motion, estimate P (b) by

P̂n(bm) =
1
n

n∑

k=1

gm((W k
ti)i=1,m).(6)

This procedure leads to an error depending on

∆m = |P (b)− P (bm)|(7)

and n, the number of discrete paths generated. Let N = mn denote the number of univariate Gaussian
random variables generated. σ2

m is the variance of gm. The mean squared error (MSE) is then

∆2
m + E[(P (bm)− P̂n(bm))2] = ∆2

m + σ2
m

m

N
.
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In finite-dimensional problems the MSE is O(1/N). Here, as a typical infinite-dimensional
estimation problem, the rate O(1/N) is achieved due to the bias P (b) − P (bm). Note that since the
MSE depends not only on the number of paths generated, but also on the bias, we have to increase
m and N to get a consistent estimate. The behavior of ∆m for m →∞ is well- known. Pötzelberger
and Wang (2001) and later Borovkov and Novikov (2003) have shown that if bm is the secant of b on
the intervals [ti−1, ti], then

∆m = O(1/m2)

with ∆m = o(1/m2) only if b is itself piecewise linear. Therefore the MSE is O(1/m4) + O(m/N) =
O(1/N4/5) when m ∝ N1/5.

There exists an unconditional version of the estimator. Generate additionally to each discrete
path W k = (W k

ti)i=1,m m variables (Y k
1 , . . . , Y k

m), which are, given W k, independent, with Y k
i ∈ {0, 1},

Y k
i = 0 if W k

ti−1
> b(ti−1) or W k

ti > b(ti) or else

P (Y k
i = 1) = 1− exp

{
− 2

∆ti
(b(ti−1)−W k

ti−1
)(b(ti)−W k

ti)
}

.

Let

P̂n(bm) =
n∑

k=1

∏m
i=1 Y k

i

n
.(8)

This estimator is interesting only from a theoretical point of view, see the proof of Theorem 2. It uses
twice the number of random variables as the conditional estimator and its variance is greater.

2.3 Assumptions and Results on the Bias

Theorem 1 gives for Brownian motions the relevant results for the approximation of a boundary b by
boundaries b̃ in the norm ‖b − b̃‖∞ = sup{|b(t) − b̃(t)| | 0 ≤ t ≤ T}. We call a boundary bm the
approximating polygon of b of order m, if for ti = iT/m, bm is linear on [ti−1, ti] and bm(ti) = b(ti).

Theorem 1 Let (Wt) denote a Brownian motion and b a boundary with b(0) > 0. Let

τ = inf{t < T | Wt ≥ b(t)}

with τ = ∞ on {Wt < b(t) for all t < T}.
1. Let b be Lipschitz continuous on [0, T ] with Lipschitz constant

b′∞ := sup{|b(t)− b(u)|/|t− u| | 0 ≤ u < t ≤ T} < ∞.

Then, for ε > 0,

∆(b, b + ε) ≤ ε

(
2b′∞(1− P (b)) +

2√
T

φ

(
b(T )√

T

))
.(9)

2. Let b be additionally twice differentiable with |b′′| bounded by b′′∞ on ]0, T [ and let b(0) > 0. Then
for the approximating polygon bm of order m,

‖b− bm‖∞ ≤ T 2b′′∞
8m2

.(10)

Thus

∆(b, bm) ≤ 1
m2

(
2b′∞(1− P (b)) +

2√
T

φ

(
b(T )√

T

))
T 2b′′∞

8
.(11)
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Remark. Uniform partitions, i.e. equally spaced (ti), are not optimal. Pötzelberger and Wang (2001)
derived properties of asymptotically optimal partitions and proved that ∆(b, bm) = O(1/m2), when
the curvature of b is taken into account. For uniform partitions, ∆(b, bm) = O(1/m2) has been proved
by Borovkov and Novikov (2005). Their proof and that of Theorem 1 are essentially the same. Our
result is an improvement also for Lipschitz continuous boundaries. Moreover, it is new for boundaries
with unbounded derivative for which the density of τ is bounded on neighborhoods of the poles of b′,
like b(t) = b(0) +

√
t.

2.4 Naive MC Estimator

The convergence rate O(1/N4/5) of the MSE for MC estimators that are based on approximating the
boundary by a piecewise linear boundary my be improved considerably, for instance by the methods
presented in the next section. To show that it is not too bad either, i.e. that one could do much worse,
let us briefly discuss the naive MC approach to estimating a BCP. Here P (b) is approximated by the
discrete BCP

PE
m(b) = P (Wti ≤ b(ti), i = 0, . . . , m).(12)

Let ti = Ti/m, i = 0, . . . , m, generate n = N/m paths W k = (W k
t1 , . . . ,W

k
tm), estimate P (b) by

P̂ (Wti ≤ b(ti), i = 0, . . . , m) = P̂n.(13)

It is known that we have

∆E
m = PE

m(b)− P (b) = O(m−1/2).(14)

To see this, consider a constant boundary. The maximum of a Brownian motion in an interval
of length 1/m has a size proportional to m−1/2. More precisely, define

W ∗ = max{Wt | t ∈ [0, 1]}
W ∗

m = max{Wi/m | i = 0, . . . ,m}
Chernoff (1965) showed

W ∗ −W ∗
m =

c√
m

+ o

(
1√
m

)
, c =

ζ(1/2)√
2π

≈ 0.5826,

with ζ the Riemann zeta function. Thus

P (b)− PE
m(b) = P (b)− P (b− c√

m
) + o

(
1√
m

)

= 2Φ(b)− 2Φ(b− c√
m

) + o

(
1√
m

)

=
2φ(b)c√

m
+ o

(
1√
m

)

From (14) we conclude that the MSE is of the form

(∆E
m)2 + c2

m

N
= c1

1
m

+ c2
m

N
= c3

1
N1/2

(15)

with m ∝ N1/2.
The result gets worse when the naive method is applied for estimating boundary crossing prob-

abilities of general diffusion processes. In the case of the Brownian motion, at least the distribution
of the discrete path (Wi/m)i=0,...,m is exact. In general, a discrete path is generated by some method
like the Euler approximation, increasing errors considerably.
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3 Adaptive Control Variables and Iterated Adaptive Control Vari-

ables

3.1 Adaptive Control Variables

Needless to say, there is no best or optimal MC method. There exists no lower bound to the variance
except 0, so that every single method may be improved (unless the expectation is computed exactly,
which is not regarded as a MC approach). The field of variance reducing methods is rich, especially
for infinite-dimensional problems. Here adaptive methods can lead to essentially optimal rates (but
only rates) of convergence of estimators.

The idea behind the method of control variable (to reduce the variance) is most simple. If
E[g∗] has to be estimated, choose g with E[g∗] = E[g] and Var[g] < Var[g∗]. Of course, since E[g∗] is
unknown, the choice of g is the crucial part of the method. A control variable h is a variable, for which
the expectation, µh = E[h] is known, i.e. can be computed analytically. Then g = g∗ − (h − µh). h

should approximate g∗, since an upper bound of Var[g] is E[(g∗−h)2]. In finite-dimensional problems
h is usually specified up to a multiplicative constant that can be estimated from the generated sample.
The method is equivalent to regressing g∗ onto h with the variance of g∗ replaced by the residual
variance.

In infinite-dimensional problems the method of control variable may even be adaptive if a se-
quence (hm), with hm → g∗ in the quadratic mean, is chosen. Here a hierarchy of difficulties for
estimating expectations exists. The interesting and crucial fact is that the method works even if E[hk]
cannot be computed analytically, but if it can be estimated with “less difficulty”than E[g∗].

Let us describe the method of adaptive control variables (AC) for one-sided boundary crossing
probabilities and the conditional estimator. Let k < m be integers. The boundary b is approximated
by piecewise linear boundaries bm and bk. P (bm) is the expectation of gm given by (5). As control
variable we choose gk. Its expectation, P (bk), has to be estimated. Let N = N1 + N2, where in a first
step N2 univariate random variables are used to generate n2 = N2/k discrete paths to estimate P (bk)
by P̂n2(bk) and then N1 univariate random variables are used to estimate P (bm) by the method of
control variable as the expectation of gm− (gk− P̂n2(bk)). To simplify the exposition of the procedure,
assume that m is a multiple of k, m = kd. For the second, the control variable step, generate
n1 = N1/m discrete paths W j = (W j

ti)i=1,...,m, j = 1, . . . , n1, and estimate P (bm) by

P̂C
n1

(bm) =
n1∑

j=1

gm(W j)− (gk(W j)− P̂n2(bk))
n1

.(16)

Note that gk(W j) is gk((W
j
tid

)i=1,...,k) and uses only the path W j at the time-points tid, i =
1, . . . , k. Essentially, the conditional estimator (without control variable) counts the proportion of
discrete paths that do not cross the boundary bm, with a correction term that takes the probability of
crossing the boundary between the discrete time-points into consideration. The conditional estimator
with control variable counts only the paths that cross one boundary, but not the other. Now if both
bm and bk converge to b, the proportion of these paths goes to 0, increasing the convergence rate of
the estimator.

The error is

P (b)− P̂C
n1

(bm) = P (b)− P (bm) + P (bm)− P̂C
n1

(bm),(17)

the MSE is

(∆m)2 + Var[gm(W )− P (bm)− gk(W ) + P (bk)]
m

N1
+ Var[gk(W )− P (bk)]

k

N2
.(18)
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It depends on E[(gm(W ) − P (bm) − gk(W ) + P (bk))2], which can be shown to be O(1/k2) for the
conditional estimator. We get

MSE ≈ c1
1

m4
+ c2

m

k2N1
+ c3

k

N2
≈ c4

1
N12/13

(19)

with m ∝ N3/13 and k ∝ N1/13.

Theorem 2 Assume the BCP for the boundary b is estimated by an AC approach corresponding to
the MC estimator defined by gm.

Let ∆m = O(1/mα) for m →∞ and supm>k Var[gm(W )−gk(W )] = O(1/kβ) for k →∞. If m = mN

and k = kN with

m ≈ N
1+β

1+2α(1+β) ,(20)

k ≈ N
1

1+2α(1+β) ,(21)

then the MSE of the AC estimator is O(1/Nγ) with

γ =
2α(1 + β)

1 + 2α(1 + β)
.(22)

Remark. 1. For sequences (mN ) and (m′
N ) the notation mN ≈ m′

N is short for: (mN/m′
N ) is

bounded from above and below.
2. With the choices (20) and (21) and N1 = π1N , N2 = (1−π1)N , the rate O(1/Nγ) holds. Constants
in the definition of m and k and π1 are chosen in order to minimize the MSE.

3.2 Iterated Adaptive Control Variables

An adaptive control variable for the control variable itself can further improve the performance of the
MC estimator. This leads to the method of iterated adaptive control variables (IAC).

Let kr < kr−1 < · · · < k1 < k0 be integers and let bki , i = 0, . . . , r, denote the approximating
polygons of the boundary b. For each of the r + 1 boundaries the corresponding BCP P (bki) is the
expectation of a function gki , the choice of the functions gki depend on the underlying MC method.

Proceed as follows. Let bki be linear on [tj(i), tj+1(i)], with tj(i) = Tj/ki and j = 0, . . . , ki. Let
τi = {tj(i) | j = 0, . . . , ki}. In the simplest case the τi+1 ⊆ τi. This is the case if ki+1/ki is an integer.
If the sets τi are not decreasing, define τ∗i = τi + τi+1 for i < r and τ∗r = τr.

Choose N0, . . . , Nr with N0 + · · ·+ Nr = N .
Generate nr = Nr/kr copies of the discrete Brownian motion (Wt)t∈τ∗r and estimate P (bkr) by

P̂nr(bkr) = (gkr)nr
. The remaining BCP’s are estimated with AC, starting with i = r − 1. Gener-

ate ni = Ni/ki copies of the discrete Brownian motion (Wt)t∈τ∗i and estimate P (bki) by P̂ni(bki) =

(gki − (gki+1 − P̂ni+1(bki+1)))ni
.

Notation. Let ∆m = O(1/mα) and supm>k Var[gm(W )−gk(W )] = O(k−β). Let ν∆, ν∗ and ν denote
constants, such that ν∆ is an upper bound for ∆mmα, ν∗ for Var[gk(W )] and ν for
supm>k Var[gm(W )− gk(W )]kβ. Define

MSE∗ = ν2
∆

1
k2α

0

+ ν
k0

kβ
1 N0

+ ν
k1

kβ
2 N1

+
kr−1

kβ
r Nr−1

+ · · ·+ ν∗
kr

Nr
.(23)

Then MSE ≤ MSE∗.

Theorem 3 Assume the BCP for the boundary b is estimated by an IAC variables approach corre-
sponding to the MC estimator defined by gm.
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1. Let ∆m = O(1/mα) for m →∞ and supm>k Var[gm(W )− gk(W )] = O(1/kβ), for k →∞.

If ki ∝ Nωi with

ωi =
βr+1−i − 1

2α(βr+1 − 1) + β − 1
for β 6= 1,(24)

ωi =
1− i/(r + 1)

2α + 1/(r + 1)
for β = 1,(25)

then the MSE of the AC estimator is O(1/Nγr) with

γr =
2α

2α + 1−β
1−β(r+1)

for β 6= 1,(26)

γr =
2α

2α + 1
r+1

for β = 1.(27)

2. If ∆m = O(1/m2) for m →∞, we have for the conditional estimator estimator

γr =
2r+3 − 4
2r+3 − 3

.

For β < 1, γr is bounded by 2α/(2α + 1 − β) < 1. However, if β ≥ 1, then limr→∞ γr = 1,
suggesting that choosing r = rN with rN → ∞ and suitable k0, . . . , kr and N0, . . . , Nr, leads to a
procedure with MSE of order O(1/N). In fact, this is true for β > 1, the upper bound (23) of the
MSE is O(1/N).

Let β > 1. Let ρ be a constant, its choice will be discussed later. Let r̃ be defined by

log N

2α(βr̃ − 1)/(β − 1) + 1
= ρ(28)

and set r = br̃c. Define

ϕj =
βj+1 − 1

β − 1
,(29)

c =
ν∗

ν2
∆

(
1− β−(r+1)/2

1− β−1/2

)2

,(30)

µ =
ν∗

νββ/(β−1)
,(31)

πi = β(i−r)/2 1− β−1/2

1− β−(r+1)/2
,(32)

Ñi = πiN,(33)

aj = µϕj−1βj/(β−1),(34)

k̃r =
(

N2αϕr

ca2α
r

)1/(2αϕr+1)

,(35)

k̃i = k̃ϕr−i
r ar−i, i = 0, . . . , r − 1.(36)

Note that the quantities k̃i, Ñi are not necessarily integers. Let us postpone this problem. With
the choice k̃i for ki, Ñi for Ni, MSE∗ is

MSE∗ = ν2
∆

(
1

k̃2α
0

+
ck̃r

N

)
=

ν2
∆cµ1/βeρ

N
(1 + o(1))
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for N →∞. If ki = dk̃ie and Ni = bÑic, we get

MSE∗ =
ν2
∆cµ1/βeρkr

N(kr − 1)
(1 + o(1)).(37)

For N →∞, we have
kr = eρµ1/β(1 + o(1)).

Fix some lower bound k∗r for kr, such that ki > ki−1 for i = 0, . . . , r−1. This is the case if k∗r ≥ µ−1/β.
k∗r is controlled by the choice of the parameter ρ, since

kr = eρµ1/β(1 + o(1)).

Theorem 4 Assume the BCP for the boundary b is estimated by an IAC variables approach corre-
sponding to the MC estimator defined by gm. Let ∆m = O(1/mα) for m →∞ and supm>k Var[gm(W )−
gk(W )] = O(1/kβ) for k → ∞. If β > 1, then, with the choices of r, ki and Ni described above, we
have

MSE ≤ ν∗µ1/βeρk∗r
N(1− β−1/2)2(k∗r − 1))

+ o

(
1
N

)
(38)

4 Diffusion Processes

To estimate boundary crossing probabilities P (b) for diffusion processes (Xt) defined by (3), it is
convenient to proceed as follows. The feasibility of the proposed steps depend on regularity conditions,
which we assume to hold and which have to be checked for the considered processes and boundaries.
Again, we consider the one-sided problem only, but this is done only to facilitate the exposition.

1. Check whether the process may be transformed by Yt = F (t,Xt) to a Gaussian process dYt =
σ(t)dWt with deterministic σ(t). In this case, (Yt) has the same distribution as (Wa(t)) with a(t)
deterministic. The BCP can then be transformed to a BCP for the Brownian motion. Necessary
and sufficient conditions on µ and σ for the existence of such a transformation are given in Wang
and Pötzelberger (2007).

2. If Step 1 is not operable, apply the Lamberti transform Yt = F (t, Xt) with ∂F/∂x = 1/σ(t, x) to
get a constant diffusion coefficient. If F (t, .) is invertible, (Yt) is of the form dYt = η(t, Yt)dt+dWt.

3. Apply Girsanov’s transform. Let Q << P with

dQ

dP
= exp

(
−

∫ T

0
η(t, Yt)2dt/2 +

∫ T

0
η(t, Yt)dWt

)
.(39)

W.l.g. assume that Y0 = 0. Note that under Q, (Yt) is a Brownian motion and for h = dP/dQ,

P (Yt ≤ b(t) ∀t ≤ T ) = EQ[I(Yt ≤ b(t) ∀t ≤ T )h] = P (b;h).

4. Apply a method such as the Euler or Milshtein scheme (see Kloeden and Platen (1992)) to
approximate h by ĥ which is a function of (Wti)

m
i=0. Replace ∆m = ∆(b, bm) by ∆m = ∆(b, bm)+

|P (bm;h)− P (bm, ĥ)|. Estimate P (bm, ĥ) by the conditional estimator with control variables.

The following table gives the rates of convergence of the MSE for the thus described procedure.
The MSE is O(1/Nγ):
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Scheme # of control variables γ

Euler 1 3/4
Euler 2 7/8
Milshtein 1 6/7
Milshtein 2 14/15
Order 1.5 1 9/10
Order 1.5 2 21/22
Order 2 1 12/13
Order 2 2 28/29

5 Numerical Example

To verify the results on the convergence rates of the proposed methods, we estimated the BCP for the
boundary

b(t) = 1− t log
(

1/20 +
(
1/400 + 50 e−4/t

)1/2
)

(40)

and T = 1. This BCP can be computed by the method of images, it is

P (b) = Φ(b(1))− 0.1Φ(b(1)− 2)− 50Φ(b(1)− 4) = 0.7579922.(41)

A boundary, for which the BCP may be computed analytically, allows to assess the accuracy of
the estimators. We estimated the P (b) by the naive approach and by the conditional estimator, with
0, 1 and 2 adaptive control variables. N , the number of univariate random variables used, ranged
from N = 104 to N = 107. Note that Theorems 2 and 3 give the rates for k0, . . . , kr. Proportionality
factors are chosen to minimize the MSE∗ (23), the upper bound of the MSE. The parameters ν∆, ν

and ν∗ can be estimated.
We used the following parameters:

1. For the naive estimator, we chose in each step m =
√

N intervals and therefore also
√

N discrete
paths.

2. For the conditional estimator, the parameters k0(= m), k1, k2 were (AC denotes the number of
adaptive control variables):

0 AC: k0 = 5, 10, 15, 25 for N = 104, 105, 106, 107.

1 AC: (k0, k1) = (8, 2), (15, 3), (24, 3), (40, 4) for N = 104, 105, 106, 107.

2 AC: (k0, k1, k2) = (9, 3, 1), (15, 3, 1), (24, 4, 2), (36, 4, 2) for N = 104, 105, 106, 107.

The MSE was estimated by computing 1000 repetitions for N = 104, 105, 106 and 200 repetitions
for N = 107. The following table summarizes the results. It gives the estimated MSE, standard errors
are in brackets.

Method N = 104 N = 105 N = 106 N = 107

Naive 3.89× 10−3 1.21× 10−3 4.06× 10−4 1.26× 10−4

(2.8× 10−5) (8.9× 10−6) (1.0× 10−5) (3.2× 10−6)
0AC 1.61× 10−4 3.25× 10−5 5.09× 10−6 8.77× 10−7

(1.1× 10−6) (7.2× 10−7) (1.1× 10−7) (2.3× 10−8)
1AC 1.21× 10−4 1.87× 10−5 2.86× 10−6 3.85× 10−7

(4.2× 10−6) (6.3× 10−7) (9.6× 10−8) (2.5× 10−8)
2AC 1.24× 10−4 2.08× 10−5 2.69× 10−6 3.44× 10−7

(4.1× 10−6) (5.7× 10−7) (1.7× 10−7) (3.8× 10−8)
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It is quite evident that adaptive control variables improve the estimator. For small sample sizes
1 AC variable outperforms 2 AC variables, but for moderate to large sample sizes 2 AC variables are
better. For the sample sizes considered, 3 AC variables were inferior to 2, however further experiments
suggest that for N ≥ 108, or greater, 3 AC are better.
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ABSTRACT

The method of adaptive control variables is an efficient Monte Carlo approach to compute bound-
ary crossing probabilities (BCP) for Brownian motion and a large class of diffusion processes. Let N

denote the number of (univariate) Gaussian variables used for the MC estimation. Typically for
infinite-dimensional MC methods, the convergence rate is less than the finite-dimensional O(1/N).

The boundary b is approximated by a piecewise linear boundary bm, which is linear on m intervals.
The mean squared error for the boundary bm is of order O(m/N), leading to a mean squared error for
the boundary b order O(1/Nβ) with β = 2α/(2α + 1), if the difference of the (exact) BCP’s for b and
bm is O(1/mα). Let bk be a further approximating boundary which is linear on k intervals. If k is
small compared to m, the corresponding BCP may be estimated with high accuracy. The BCP for bk

is the control variable. Iterated it improves the convergence rate of the MC estimator to O(1/N1−ε)
for all ε > 0, reducing the problem of estimating the BCP to an essentially finite-dimensional problem.
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