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1 Introduction

Population genetics is the study of genetic composition of populations, which may be affected by selec-

tion, mutation, recombination, migration and other genetic, ecological and evolutionary factors. It is a

vital ingredient in the modern synthesis of Mendelian genetics and Darwinian evolution. Mathematical

thinking and methodology have been entrenched in population genetics since its early days. The past

30 years have seen a flourishing of the application of mathematical, especially probabilistic, techniques

to the study of population genetics and indeed to problems from across the biological sciences.

Recently there has been much renewed interest among both biologists (see e.g. Gerrish &

Lenski 1998, Wilke 2004) and physicists (see e.g. Higgs & Woodcock 1995, Rouzine et al 2003, Desai

& Fisher 2007, Brunet et al 2008, Park et al 2010) in an old question in the mathematical theory of

evolution: how quickly can large asexual populations adapt to a novel environment by incorporating

beneficial mutations? This elementary question is surprisingly difficult to answer, even for the simple

‘toy models’ usually discussed. This difficulty is partly due to the involvement of selection – population

genetics models are rendered nonlinear by selection – and partly due to its stochastic nature. Taking

the infinite population limit and obtaining a deterministic system, if possible at all, reveals very little

about the behaviour of the system for a finite population size. An essential assumption (to make the

problem mathematically tractable) that is generally made is that the effect of mutations on log-fitness

is additive. In this case the type of an individual is characterised by its location within the fitness

space (which can be thought of as Z). For small selection coefficients, the situation is then analogous

to the noisy travelling front problem which is extensively studied in statistical physics. In that setting,

the behaviour at the front of the wave has a subtle yet important stochastic effect on the speed of

the wave, which equates to the rate of adaptation in the biological context. Much of the recent work

on the rate of adaptation problem was performed by physicists. This body of work provides many

valuable insights and useful formulae, but it is non-rigorous and focusses on the asymptotics in the

(very) large population limit. There are remarkably few rigorous results available. Our goal here is

to outline a mathematically rigorous route to an expansion formula for the rate of adaptation for a

Fleming-Viot process with selection.

We consider an asexually reproducing population which is not spatially structured and which

is of constant size. We are concerned with the effects of the combined forces of mutation, genetic

drift and natural selection. Mutation constantly introduces variation in traits, whereas genetic drift

and natural selection causes variants to be more or less common in the population. Genetic drift is

directionless and produces entirely random changes in the frequency of a trait. Natural selection, on

the other hand, tends to increase the frequency of traits that give its carrier a higher fitness, thus
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causing a species to adapt to its environment. In this context, fitness is a measure of the reproductive

success of an organism. A beneficial mutation increases the fitness of its carrier by increasing the

number of offspring that survive to adulthood, deleterious mutations decrease fitness, while neutral

mutations have no effect on fitness. Although we have a fairly detailed understanding of the interplay

between mutation and genetic drift, models that incorporate selection acting on multiple loci are

much less tractable, even in asexually reproducing populations. In this case, different selected alleles

compete with each other, resulting in ‘clonal interference’ (Gerrish & Lenski 1998). A shortage of

tools for rigorous analysis has resulted in a poor understanding of such models.

The process whereby a beneficial mutation arises (in what is generally assumed to be a large

and otherwise neutral population) and eventually spreads to the entire population is called a selective

sweep. If mutations are so rare that a selected mutation is likely to spread to the entire population

or go extinct before the next mutation, then each mutation can be considered in isolation. In this

case, the proportion of the population possessing this mutation can be studied using the diffusion

approximation and applying well-known results from one-dimensional diffusion theory. For isolated

selective sweeps, the fixation probability (i.e. the probability of the mutation spreading to the entire

population) is not sensitive to population size (provided it is reasonably large). The problem is far

more difficult if one considers overlapping selected sweeps at linked loci. If there is no recombination,

in order for two favoured mutations to fix, one must arise in an individual carrying the other. This

provides an evolutionary advantage to sex and recombination (the Hill-Robertson effect). Even in the

presence of recombination, fixation probabilities can be greatly reduced. Previous work (Barton 1995,

Yu & Etheridge 2010, Cuthbertson et al. 2010) shows that in the presence of recombination, even

understanding the case of two overlapping sweeps is very involved.

If the population size is large, then new mutations will continually fall on the population before

the fate of mutations already present in the population has been decided. The rate of adaptation is

defined to be the expected increase of the mean fitness of the population per generation. It has been

studied since the 1930’s. In 1930, Fisher stated his famous Fundamental Theorem of Natural Selection:

‘The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at

that time.’ This law, which appears in calculations of almost every subsequent model with selection,

uncovers a considerable challenge: as observed in Higgs & Woodcock (1995), the moments of the

fitness distribution do not form a closed system of equations (unlike the neutral case, see discussion

after (1) below).

2 The Model

We first describe an individual based model. For mathematical convenience we will use a Moran

(overlapping generation) model rather than the (discrete generation) Wright-Fisher model that is more

commonly employed in the biology literature. Since we will later pass to a diffusion approximation,

this does not affect our results. Let µ̃ and s̃ be the unscaled mutation and selection parameters,

respectively. When parameters are small, one typically approximates the Wright-Fisher model by

separating the mutation and reproduction mechanisms, and letting the waiting time between ‘clicks’

of each mechanism be exponentially distributed. We assume an ‘infinitely-many-sites’ model in which

each new mutation arises at a different location on the genome and, further, we follow previous work

by assuming that each mutation will either increase or decrease an individual’s log-fitness by the

fixed amount s̃. Our unscaled model involves the following two mechanisms. For each individual i

in a population {1, . . . , N} of constant size N , we write Xi for its current ‘fitness class’ (that is the

number of favourable mutations minus the number of unfavourable mutations that it carries). It can

experience two types of event:
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1’ a mutation event at rate µ̃: with probability q, Xi changes to Xi + 1; otherwise Xi changes to

Xi − 1;

2’ a reproduction event at rate 1: an arbitrary individual j is picked, and then individual i replaces

individual j with probability (0∨ 1
2(1+s̃(Xi−Xj)))∧1; otherwise, individual j replaces individual

i.

The time scaling here is such that one unit of time roughly corresponds to one generation. One may

study this unscaled particle model directly, e.g. in Yu et al (2010), we established an asymptotic lower

bound of log1−δ N (δ is any positive number and N is the population size) on the rate of adaptation

for large populations. However, a drawback of the particle system approach is that it does not yield

explicit expressions for the rate of adaptation.

In this work, as first outlined in Yu & Etheridge (2008), we take the same model and apply a

‘diffusion approximation’. First we speed up time by a factor N . Writing µ = Nµ̃ and s = Ns̃ for the

scaled mutation and selection parameters, we obtain that each individual i experiences:

1. a mutation event at rate µ: with probability q, Xi changes to Xi + 1; otherwise Xi changes to

Xi − 1;

2. a reproduction event at rate N : an arbitrary individual j is picked, and then individual i replaces

individual j with probability 1
2(1 +

s
N (Xi −Xj)); otherwise, individual j replaces individual i.

We then consider frequencies of individuals in each fitness class in the population and take the limit

as N → ∞. Mechanism 2, like 2’, should really include 0∨ and ∧1. However, |Xi −Xj| is overwhelm-

ingly likely to be much smaller than O(N). To see why, notice that under neutral reproduction, the

genealogy of the whole population is given by Kingman’s coalescent and so the entire population had

its most recent common ancestor at a time of O(1) before the present. The differences between the

numbers of mutations accumulated along different lineages is then of the same order. The presence

of selection only serves to shorten the genealogical tree and so reduce variability in fitness. Diffusion

approximations are advantageous in two ways. First, they are robust in the sense that many popu-

lation models with similar population dynamic features are well approximated by the same diffusion

approximation when population size is large. Second, in the resulting large population limit where

µ = Nµ̃ and s = Ns̃ are both held constant as N → ∞, the frequency of alleles is described by

a (possibly multi- or infinite-dimensional) diffusion process with the stochastic effect of genetic drift

preserved under passage to the limit.

If we take s̃ = 0, then we obtain the neutral model, where all individuals in the population

are equally successful at reproducing and quantities such as the long-term rate of accumulation of

mutations can be easily calculated. It is simply the rate of mutations falling on a single individual,

since most mutations that appear in an individual will have fallen on the common ancestor of all

individuals prior to the time when all lineages from the present have merged.

A model with beneficial and deleterious mutations in addition to neutral ones is much more

mathematically challenging. The main reason for this is that the probability distribution of the

number of offspring of each individual will depend on its fitness at the time of reproduction, which in

turn depends on the genealogy of the population prior to that time. In other words, the key property

that makes the neutral model amenable to analysis, that is the independence of the genealogy and

mutation processes, no longer holds in the selected case. Of all previous work on the rate of adaptation

of which we are aware, that most closely related to our approach is Rouzine et al (2003). They treat

Pk (the proportion of individuals of fitness class k) as a travelling wave in fitness space that has a

roughly Gaussian shape. The variance of Pk is determined by stochastic effects at the edge of the wave

where the population density is O(1/N). The travelling wave bears some similarity to the solution
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to the stochastic Fisher-KPP equation, in which stochastic effects at the front determine the speed of

the wave. Here, however, the analysis is considerably more difficult since, as N → ∞, the speed of

the wave is roughly logN (instead of approaching a limit as in the Fisher-KPP case), so that there is

no limiting solution. The critical assumption in Rouzine et al (2003) is that the shape of the wave is

approximately deterministic (i.e. the variance of P is approximately a constant rather than a random

variable) when population size is very large. This assumption has not been verified mathematically

and as a result it seems difficult to make this approach rigorous.

If mutations in a finite asexual population are all deleterious, then selection, perhaps counter-

intuitively, is unable to counter-balance the effect of constant accumulation of deleterious mutations

and the mean fitness of the population deteriorates inexorably. This is commonly known as Muller’s

ratchet, which was first described by H. J. Muller in 1964. Due to page constraints, we will not go

into further details. Muller’s ratchet gives a very appealing explanation for the advantage of sexual

reproduction and the evolution of recombination. However, just as the case of beneficial mutations,

the process is surprisingly difficult to analyse for one so simply defined. There are almost no rigorous

results in the literature in the finite population case. For example, the rate of deterioration of the

mean fitness is not known.

In this work, we start with a diffusion approximation (obtained by passing to a limit from

mechanisms 1 and 2) and follow a rigorous approach. Through some standard calculations involving

martingale decomposition (see e.g. Yu & Etheridge 2008 for more details), we obtain that Pk, the

proportion of individuals with fitness type k, obeys the following infinite system of interacting SDE’s:

(1) dPk = [µ(qPk−1 − Pk + (1− q)Pk+1) + s(k −m(P ))Pk] dt+
∑

l∈Z

√

PkPl dWkl, k ∈ Z,

where m(p) =
∑

k kpk is the mean of distribution p, {Wkl : k, l ∈ Z, k > l} are independent Brownian

motions and Wkl = −Wlk. For convenience we also set Wkk = 0. The terms on the right hand

side of (1) correspond to the effects of, respectively, mutation (individuals with fitness type k change

to type k + 1 at rate µq and to type k − 1 at rate µ(1 − q)), selection (the size of fitness class k

increases/decreases exponentially at rate s(k −m(P ))), and genetic drift (the stochastic term).

From (1), one obtains an evolution equation for the mean fitness m(P ) of the population:

dm(P ) = d
∑

k

kPk
m
=

∑

k

k[µ(qPk−1 − Pk + (1− q)Pk+1) + s(k −m(P ))Pk] dt

= (µ(2q − 1) + sc2(P )) dt

where
m
= means the left and right hand sides differ by a martingale (hence have the same expectation),

and c2(p) is the variance of distribution p. This is consistent with Fisher’s Fundamental Theorem

of natural selection: the mean fitness m(P ) evolves at a speed proportional to the fitness variance

c2(P ) of the population. This results from the nonlinearity of the selection term. More generally, the

moments of P , unlike in the neutral case, do not form a closed system: the first moment depends on

the second, the second moment on the third, and so on.

3 Application of Girsanov Transformation

Recall that the Girsanov Theorem is a powerful tool in probability theory with wide-ranging appli-

cations and no counterpart in classical calculus. It tells us how solutions to SDE’s change under

change of probability measures. More specifically, it allows us to transform the probability measure

that corresponds to the solution of one SDE to that corresponding to an SDE with the same noise

component, but different drift component (drift here in the mathematical sense). This transformation

of probability measures can be extended to multi- or even infinite-dimensional diffusions. We shall use
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the infinite-dimensional version of Girsanov Theorem, developed by Dawson (see e.g. Dawson 1993)

for superprocesses. In fact, Dawson (1993) remarks that a Girsanov transform can be applied to a

neutral model to obtain one with selection, but to the best of our knowledge this has not been fully

exploited in the study of models with selection.

Let Ps, Es, and As denote respectively the probability measure, the expectation under Ps, and

the generator corresponding to solutions of (1). Moreover, let P̃ be P centred about its mean, P̃s

be the probability measure of P̃ , and Ẽs be the corresponding expectation. In particular, P0 is the

probability measure corresponding to solutions of the SDE system evolving according to the neutral

generator A0:

(2) dPk = µ(qPk−1 − Pk + (1− q)Pk+1) dt+
∑

l∈Z

√

PkPl dWkl, k ∈ Z,

where the Wkl’s are as in (1). We define

M(t) = m(P (t))− µ(2q − 1)t(3)

to be the martingale part of the mean fitness (with the convention M(0) = 0) and Z to satisfy

dZ = sZ dM , i.e.

Z(t) = exp

{

sM(t)−
s2

2

∫ t

0
c2(P (u)) du

}

.(4)

Then provided that Z(t) is a martingale, Dawson’s Girsanov Theorem states that

dPs

dP0

∣

∣

∣

∣

Ft

= Z(t).

In one-dimensional stochastic calculus, in order to verify that Z(t) is a martingale, one usually checks

the Novikov condition: E0 [exp {〈M〉 (t)}] < ∞ for all t > 0. In our case, however, it is easier to verify

the Kazamaki condition:

E0

[

e
s
2
M(t)

]

< ∞ for all t > 0.

The Kazamaki condition above is not immediate in this infinite-dimensional case and we spend a

paragraph giving an outline of the proof of its validity. We shall use Kingman’s coalescent (Kingman

1982) to calculate M(t). For simplicity, we assume that all mutations are beneficial (i.e. q = 1), but

this is not necessary. Recall that in the neutral model the genealogy of the population at time t is

determined by Kingman’s coalescent and mutations can be superposed according to an independent

Poisson process of rate µ along each ancestral lineage in the genealogy. For k ∈ N, let Tk (T1 < T2 <

. . . < t) be the first time (before t) when there are k lineages left in the coalescent, and let Sk = 0∨Tk

(with S0 = 0). Let Xkl (l = 1, . . . , k) be the number of mutations falling on the lth lineage during

(Sk−1, Sk]. Then

m(P (t)) =
∞
∑

k=1

k
∑

l=1

aklXkl,

where akl ≥ 0 denotes the ‘weight’ of lineage l during (Sk−1, Sk], that is the proportion of the popula-

tion at time t which is descended from the lineage labelled l at time Sk. In particular,
∑k

l=1 akl = 1.

Since conditioning on {Tk, k ∈ N}, all the Xkl’s are independent with Xkl ∼ Poisson(µ(Sk − Sk−1)),
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we have

E0

[

e
s
2
M(t)

∣

∣

∣
Tk’s, akl’s

]

= E0

[

e
s
2
(m(P (t))−µt)

∣

∣

∣
Tk’s, akl’s

]

= E0

[

e−
µst

2

∞
∏

k=1

k
∏

l=1

e
s
2
aklXkl

∣

∣

∣

∣

∣

Tk’s, akl’s

]

= e−
µst

2

∞
∏

k=1

k
∏

l=1

exp{µ(Sk − Sk−1)(e
sakl/2 − 1)} = e−

µst

2

∞
∏

k=1

exp

{

µ(Sk − Sk−1)

k
∑

l=1

(esakl/2 − 1)

}

≤ e−
µst

2

∞
∏

k=1

exp
{

µ(Sk − Sk−1)(e
s/2 − 1)

}

= e−
µst

2 exp
{

µt(es/2 − 1)
}

.

Hence E0

[

e
s
2
M(t)

]

< e−
µst

2 exp
{

µt(es/2 − 1)
}

< ∞, and Kazamaki’s condition is verified.

4 The Expansion Formula

The process Z in (4) can be expanded as a power series in s. We define

(5) M (n)(t) =

∫ t

0

∫ t1

0
. . .

∫ tn−1

0
dM(tn) . . . dM(t2) dM(t1)

to be the nth iterated integral of the martingale M , with the convention that M (0) = 1 and M (1) = M .

Then

Z(t) = 1 +

∞
∑

n=1

snM (n).

This expansion formula for Z can be verified by simply taking the differential and noting that it

satisfies dZ = sZ dM . The expected mean fitness of the model with selection becomes

(6) Es[m(P (t))] = E0[m(P (t))Z(t)] = µ(2q − 1)t+
∞
∑

n=1

snE0[M
(n)(t)M (1)(t)].

The use of the iterated integral representation for Z is strongly reminiscent of Wiener chaos

expansion (see e.g. Nualart 1995), where noise is taken to be Brownian motion W . This has been

central to the theory of Malliavin calculus, thanks in part to the orthogonality of the iterated integrals

of W , i.e. E[M (m)(t)M (n)(t)] = 0 for m 6= n if we take replace M by W in (5). The orthogonality is

mainly due to the fact that Brownian motion has stationary and independent increments. Instead, in

the case of the noise term M defined in (3), we have

d 〈M〉 = d

〈

∑

k,l

k
√

PkPl Wkl

〉

=
∑

k,l

∑

k′,l′

kk′
√

PkPl

√

Pk′Pl′d 〈Wkl,Wk′l′〉

=
∑

k,l

(k2 − kl)PkPl dt = c2(P ) dt,

where the third equality above is because for k 6= l, d 〈Wkl,Wk′l′〉 = 1 if kl = k′l′, −1 if kl = l′k′, and

0 otherwise. This means that the evolution of M at any time depends on the fitness variance of the

population at that time, which in turn depends on the evolution of the population prior to that time.

It also means that the M (n)’s are not orthogonal. In order to calculate each term in the expansion (6),

we observe that

d(M (n)M (1)) = M (n−1)d(M (1))2
m
= M (n−1)c2(P ) dt.
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Therefore the adaptation rate in the selected model (with selection coefficient s) is equal to

lim
t→∞

1

t
Es[m(P (t))] = (2q − 1)µ + lim

t→∞

∞
∑

n=1

snE0[M
(n−1)(t)c2(P (t))]

= (2q − 1)µ + lim
t→∞

∞
∑

n=1

snẼ0[M
(n−1)(t)c2(P (t))].(7)

Shiga (1982) showed that there is an ergodic stationary distribution for the neutral process centred

about its mean and from now on we abuse notation by writing Ẽ0 for expectations with respect to

this stationary distribution. The problem now boils down to calculating Ẽ0[M
(n)c2(P )] for n ∈ Z

+.

The formula in (7) is rigorous for s in a certain radius of convergence (which may be ∞), although

the proof will appear elsewhere.

Rather than working with central moments, it is easier to work with the cumulants κn of p. To

see how these are defined, suppose for simplicity that p is a distribution on Z. Then the cumulants

κn are defined through the cumulant generating function:

g(x) = log
∑

k

pke
kx =

∞
∑

n=1

κn
xn

n!
.

In particular, κ2 = c2, κ3 = c3, and for n ≥ 4, κn is an nth-degree polynomial in the central moments

c2, . . . , cn. Since

A0f(p) = µ
∑

k

(qpk−1 − pk + (1− q)pk+1)
∂f(p)

∂pk
+

1

2

∑

k,l

pk(δkl − pl)
∂2f(p)

∂pk∂pl
,

we can calculate the effect of A0 on the cumulants, using the cumulant generating function g(x), to

obtain:

A0g(x) = µ(qex − 1 + (1− q)e−x) + (1− eg(2x)−2g(x)).

In particular, differentiating the above twice with respect to x yields A0c2 = µ − c2, which implies

that Ẽ0[c2] = µ. Similarly, for the next few cumulants, we obtain

A0κ3 = µ(2q − 1)− 3κ3

A0

[

κ4
κ22

]

=

[

µ

2µκ2

]

+

[

−7 −6

1 0

] [

κ4
κ22

]

A0

[

κ5
κ3κ2

]

=

[

(2q − 1)µ

(2q − 1)µκ2 + µκ3

]

+

[

−15 −10

1 0

][

κ5
κ3κ2

]

.

If we write i = (i1, . . . , iI) and κi = κi1 . . . κiI , then theoretically we can such solve linear systems for

each |i| and obtain expressions for all Ẽ0[κi]. However, it remains unclear whether there is a systematic

way of solving these systems analytically.

The quantities Ẽ0[κi] are explicitly related to the terms Ẽ0[M
(n)c2(P )] in the expansion (6). For

example, for n = 1, because

d(Mκ2)
m
= M dκ2 + d 〈M,κ2〉 = (−Mκ2 + κ3) dt,

we have

Ẽ0[Mκ2] = Ẽ0[κ3] = µ(2q − 1)/3.

Similar calculations imply that

Ẽ0[M
(2)κ2] = Ẽ0[M

(1)κ3] =
1

3
Ẽ0[κ4] = −

2

3
µ2

Ẽ0[M
(3)κ2] = Ẽ0[M

(2)κ3] =
1

3
Ẽ0[M

(1)κ4] =
1

30
Ẽ0[κ5 − 12κ2κ3] = (2q − 1)(

µ2

3
+

µ

20
).
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Recall that one of the hurdles to overcome in studying the behaviour of (1) is that the moment

equations for P are not closed. Using the Girsanov transform, we are able to resolve this problem and

write the rate of adaptation in terms of the moments of the neutral process, which are closed and can

be solved, at least theoretically. The first few terms of the expansion (7) for the rate of adaptation

are as follows:

(2q − 1)µ + sµ+ s2(2q − 1)
µ

3
− s3

2µ2

3
+ s4(2q − 1)(

µ2

9
+

µ

60
) + . . .

5 Future work: Incorporating Recombination

So far, we have only been concerned with asexual populations. A logical next step is to extend to

sexual populations, which undergo recombination. As explained as early as 1889, by Weismann, sex

does not increase the mean fitness directly (indeed it is costly) but it increases the variance in fitness

upon which natural selection acts. Using the Girsanov transform, we hope to obtain an expansion

formula for the rate of adaptation for a sexual population and compare that to the rate of adaptation

of an asexual population to actually quantify the effect of recombination on the rate of adaptation.

We will use single-crossover models presented in Baake & Baake (2003) as a basis. More concretely,

we imagine chromosomes as a linear arrangement of n sites, thus the state space becomes (k1, . . . , kn),

where each kα denotes the fitness class of site α. We will restrict to the simplest case involving only

two sites and thus one crossover point. A recombination event randomly picks two individuals i and j

and then replaces individual i with an individual of type (i1, j2). The effect of recombination should

be to add a drift term to (1), if one scales things properly, so that one obtains the following system of

SDE’s for Pk,l, the proportion of individuals with k mutations at locus 1 and l mutations at locus 2:

dPk,l = [µ1(q1Pk−1,l − Pk,l + (1− q1)Pk+1,l) + µ2(q2Pk,l−1 − Pk,l + (1− q2)Pk,l+1)

+s(k + l −m(P ))Pk + ρ((Pk1 + Pk2)(P1l + P2l)− Pkl)] dt+
∑

k′,l′∈Z

√

PklPk′l′ dWkl,k′l′ ,

where ρ is the scaled recombination rate, each mutation on either site has fitness effects ±s, and

Wkl,k′l′ ’s are independent Brownian motions such that Wkl,k′l′ = −Wk′l′,kl. Just as in the asexual

case, solutions of the above SDE system can be obtained via the Girsanov transform from those of a

system without selection, which should lead to an expansion formula analogous to (7).
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