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The development of Internet and recent studies of complex systems have significantly increased the in-
terest in modeling classes of graphs and networks. While random graphs have been studied for a long time, the
standard (Erd6s and Rényi; Gilbert) models appear to be inappropriate because they do not share the charac-
teristics observed in real life systems. Several new models were proposed that better match the reality. Most
of them are variations of the the preferential attachment model (Barabési and Albert). Often we are also inter-
ested in random graphs/networks with some additional properties (connectivity, planarity, ...) or resulting from
the evolution under certain rules. The probabilistic inductive classes of graphs allow us to consider also these
additional requirements.

Classical random graphs and scale-free networks

The notion of random graph was introduced in 1959 by Paul Erd6s and Alfréd Rényi [14] and Edgar
Gilbert [16]. In Gilbert’s approach the set G(n, p) consists of random graphs in which each pair of n nodes
is linked with a given probability p. In ErdGs—Rényi’s approach the set G(n, m) consists of all graphs with
n nodes and m edges with uniform probability (7;)_1. It turns out that in most applications both notions of
random graphs are practically interchangable, provided that n =~ pm. We shall call these models of random
graphs classical.

The theory of classical random graphs is well developed (see Bollobés [6]). Their degree distribution is
binomial (in the limit Poisson’s) and most of the nodes have degree (very) close to the average degree. The
graph property () is monotone iff for it holds: let graph H be a subgraph of graph G and H has the propery
@ then also graph G has the property (). An important observation of ErdGs and Rényi was that for many
monotone graph properties a threshold value « of p exists such that for graphs with p < « it is very unlikely
that a graph has that property, and most of graphs with p > « have that property — a kind of phase transition.
For example [29]:

—3/2

o forp >n edges with common node appear;

e forp > % triangles and other cycles appear in the graph, the graph becomes nonplanar, and soon appears
also the giant component;

e forp > lnT” almost all graphs are connected.

Real-life networks are usually not random in the classical sense. The analysis of their degree distributions
in late 90-ties by researchers from University of Notre Dame showed that most of them are very far from the
normal [2]. Usually in real life networks there are many nodes of low degree and also some nodes with very
high degree (heavy tail) — the distribution is not concentrated around the mean value.
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Figure 1: Degree distributions: classical random graph and US patents network

As an example, on the left side of Figure 1 a degree distribution of classical random graph on n = 100000
nodes with average degree deg = 30 is presented. On the right side a degree distribution for US Patents citation
network (n = 3774768 and m = 16522438) is presented. Both distributions are displayed in log-log scale.
Evidently they are very different.

Somehow surprisingly many degree distributions of real-life networks are presented in log-log scale
with a curve close to a line [2] — the distribution is close to the power law — the probability p, that a node has
a degree d equals to pg = cd~ 7. Since for this distribution no meaningful selection of the scale exists this type
of networks was named scale-free. For a detailed discussion about the notion of scale-free network see Li et
al. [23]. For methods for computing the parameter v see Newman [26].

Albert-Laszl6 Barabdési [2] also provided the first explanation of the reasons for the power law distri-
bution. He presented a model of growing network to which new nodes are added and linked to the already
existing nodes following the preferential attachment rule: the node is linked to an old node with the probability
proportional to the degree of the old node. For these networks we can show that the average length of geodesics
(shortest paths) is O(log n), and that they are resilient against random node or edge removals (random attacks),
but soon become disconnected when large degree nodes (Achilles’ heel) are removed (targeted attacks).

Several alternative models and improvements to produce scale-free (like) networks with some additional
properties encountered in real-life networks were proposed in the following years: copying (Kleinberg [20]),
combining random and preferential attachment (Pennock et al. [28]), R-mat (Chakrabarti et al. [8]), aging,
fitness, nonlinear preferences, and others.

The scale-free networks theory was applied for solving problems in different fields such as: searching in
networks (Adamic et al. [1]) and spreading of epidemies or innovations (Barthélemy, Barrat, Pastor-Sattoras,
Vespignani [9]). For detailed overviews of results on scale-free networks see Dorogovtsev and Mendes [11],
and Newman at al. [25], Kolaczyk [21], and Easley and Kleinberg [12].

Generating large sparse random graphs and networks

For studying and predicting behaviour of Internet, communication, transportation, biological, social and
other types of networks the simulation approach is usually used. As a support for it we need efficient generators
of networks of the corresponding types [7, 15].

Large networks are usually (very) sparse. In most real-life networks the capacity of a node to maintain
links with others is limited. In sociology such a bound is known as the Dunbar’s number (Hill and Dunbar
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Figure 2: Random graph of Gilbert’s type, n = 100, deg = 3; and scale-free random graph, n = 100, d = 2

[18]). Usually it is approximated by 150. Therefore the average degree in the network is not large. For this
reason the standard (based directly on the definitions) algorithms for generating random graphs of selected type
can be inefficient. In Batagelj and Brandes [5] we presented several fast algorithms for generating large sparse
random graphs and networks of different types.

For example, the generation of random graphs of Gilbert’s type is equivalent to the filling of lower
triangle of graph’s adjacency matrix with Bernoulli sequence with parameter p of length (g) In generating large
and sparse such graphs we can replace it with puting the value 1 in positions determined by the corresponding
geometrically distributed steps. This gives us the following much faster generator.

Gilbert <-
# generates a random undirected graph of Gilbert’s type
# on n nodes with expected average degree ad and writes
# it on the file fnet in Pajek’s format.
# based on ALG.1 from: V. Batagelj, U. Brandes:
# Efficient generation of large random networks
function (fnet, n, ad) {
net <- file(fnet,"w"); cat ("+*nodes",n,
"\n% random Gilbert’s graph / n = ",n," ad = ",ad, "\nxedges\n", file=net)
logQ <- log(l-ad/(n-1)); v <- 1; w <- -1

while (v < n){
w <— w + 1 + trunc(log(l-runif(1,0,1))/logQ)
while (w >= v) {w <- w-v; v <- v+1}
if (v < n) cat(v+l,w+l,’\n’,file=net)

}

close (net)

}
Gilbert ("gilbert.net",100,3.0)

Since in large sparse networks the probability p is very small in the R function Gilbert the parameter
p is replaced by a more intuitive average degree ad and computed internally using the relation

deg=p-(n—1)

Similary, representing edges with pairs of nodes and observing that the number of copies of a node in a
table equals its degree, we get the following fast generator of scale-free graphs.
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Figure 3: Netlogo: evolution of scale-free network and spreading of the virus

dice <- function(n=6) {return (l+trunc (n*runif(1,0,1)))}

ScaleFreeBrstNet <-
# generates a random directed scale free graph
# on n nodes with d attachments to existing nodes
# and stores it on the file fnet 1in Pajek’s format
# based on ALG.5 from: V. Batagelj, U. Brandes:
# Efficient generation of large random networks
function (fnet,n, d) {
net <- file(fnet,"w"); cat ("+nodes",n,"\n", file=net)
k <= 0; m <= nxd; L <- rep(0,2+*m)
cat ('% random scale free graph / n = ',n,’” d = ',d,’'\n’,file=net)
for(v in 1:n) for (i in 1:d) {
k <-= k+1; L[[k]] <= v; r <- dice(k);
k <= k+1; L[[k]] <= L[I[r]]

cat ("xarcs\n", file=net)
for (1 in 1l:m) cat (L[[2*i-1]11,L[[2*1i]],"\n’,file=net)
close (net)

}

ScaleFreeBrstNet ("scaleFree.net",100,2)

Examples of graphs generated with both algorithms are displayed in Figure 2.

Probabilistic inductive classes of graphs

B R1 R2: g
O E
Example construction:
R1 R2 Rl R2 R1
o — BN —>

Figure 4: Basic graphs and rules
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Figure 5: Basic graphs and rules

A random network can be viewed also as a result of an evolution process starting from some simple net-
work in which next network is obtained from the current network using some (local) transformation. Some such
models are implemented in programming language Netlogo [31] (see Figure 3). The class of graphs/networks
that can be obtained in this way can be described using inductive definitions (Curry [10], Batagelj [4]) or in
more formalized setting using graph grammars (Ehrig et al. 1991 [13]). In our research we prefer the less
formal inductive definitions because they are easier to adapt to specific characteristics of the classes of our
interest.

The notion of inductive class of graphs can be extended by assigning probabilities to events in the evolu-
tion process. In the paper (Kejzar et al. [19]) we presented the following definition:

A probabilistic inductive class of graphs (PICG), Z, is given by:

1. class B of initial graphs, the basis of PICG,
2. probability distribution specifying how the initial graph is chosen from class B,

3. class R of generating rules, each with distinguished left element to which the rule is applied to replace it
with the right element,

4. probability distribution specifying how the rules from class R are applied, and, finally,
5. aset of probability distributions specifying how the left elements for every rule in class R are chosen.

A random graph is obtained by starting from some randomly selected basic graph from the basis B and
applying on it a randomly selected generating rules from R on randomly selected subgraph isomorphic to the
rule’s left element. On the so obtained graph the next randomly selected rule is applied, and so on. The PICG 7
consists exactly of graphs that can be obtained in this way in a finite number of steps. The sequence of graphs
corresponding to these steps, enriched with the information about the applied rule, is called the construction
sequence of a graph from the class.

In Figure 5 a simple ICG Z(B; R1, R2) and an example of construction sequence are presented.

For the base graphs and rules from Figure 5 the ICG Z(B1; R1, R2) is the class of all connected (undi-
rected) graphs, Z(B2; R2, R3) is the class of all 2-node-connected graphs, and Z(B2; R2, R3, R4) is the class
of all 2-edge-connected graphs.

In our paper [19] we analyzed these three inductive definitions for the case when the generating rules have
constant probabilities to be selected and the left part subgraph is selected with the uniform probability among
available isomorphic subgraphs. For such relatively simple definitions theoretical answers to some questions
can be obtained using the mean-field approach from theoretical physics. For more complicated definitions it
seems that the only way to get some approximate answers is the simulation approach.

The number of classes that can be described as PICGs depends on the limitations we impose on the
language for expressing the rules. In general we can allow also parametrized schemes of rules that produce
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rules only after specifying the values of parameters — they are finitely describing possibly infinite sets of rules.

If needed we can also introduce a precedence among groups of rules — the rules with lower precedence are

applied only when no rule with higher precedence can be applied.

In networks the graph structure is enriched by values in nodes and/or on links. Often they can be treated

as colors. Taking a given network as a base network and introducing the rules that change colors, we can use

PICGs also for studying different processes on networks — for example balancing in the signed networks [17].

An interesting question to be solved is also how to estimate the probabilities of generating rules from the

realized graphs/networks.
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