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ABSTRACT 

Predicting the behavior and reliability of engineering structures and systems is often plagued by 

uncertainty and imprecision caused by sparse data, poor measurements and subjective information. 

Accounting for such limitations complicates the mathematical modeling required to obtain realistic 

results in engineering analyses. The framework of imprecise probabilities provides a mathematical 

basis to deal with these problems which involve both probabilistic and non-probabilistic sources of 

uncertainty. A common feature of the various concepts of imprecise probabilities is the considera-

tion of an entire set of probabilistic models in one analysis. But there are differences between the 

concepts in the mathematical description of this set and in the theoretical connection to the proba-

bilistic models involved. This study is focused on fuzzy probabilities, which combine a probabilistic 

characterization of variability with a fuzzy characterization of imprecision. We discuss how fuzzy 

modeling can allow a more nuanced approach than interval-based concepts. The application in an 

engineering analysis is demonstrated by means of an example. 

 
INTRODUCTION 

The analysis and reliability assessment of engineering structures and systems involves uncertainty and 
imprecision in parameters and models of different type. In order to derive predictions regarding structural 
behavior and reliability, it is crucial to represent the uncertainty and imprecision appropriately according to 
the underlying real-world information which is available. To capture variation of structural parameters, es-
tablished probabilistic models and powerful simulation techniques are available for engineers, which are 
widely applicable to real-world problems; for example, see (Schenk and Schuëller 2005). The required prob-
abilistic modeling can be realized via classical mathematical statistics if data of a suitable quality are availa-
ble to a sufficient extent. 

In civil engineering practice, however, the available data are frequently quite limited and of poor quali-
ty. These limitations create epistemic uncertainty, which can sometimes be substantial. It is frequently argued 
that expert knowledge can compensate for the limitations through the use of Bayesian methods based on sub-
jective probabilities. If a subjective perception regarding a probabilistic model exists and some data for a 
model update can be made available, a Bayesian approach can be very powerful, and meaningful results with 
maximal information content can be derived. Bayesian approaches have attracted increasing attention in the 
recent past and considerable advancements have been reported for the solution of various engineering prob-
lems (Papadimitriou et al. 2001, Igusa et al. 2002, Der Kiureghian and Ditlevsen 2009). An important feature 
of Bayesian updating is that the subjective influence in the model assumption decays quickly with growing 
amount of data. It is then reasonable practice to estimate probabilistic model parameters based on the post-
erior distribution, for example, as the expected value thereof. 

When less information and experience are available, greater difficulties will be faced. If the available 
information is very scarce and is of an imprecise nature rather than of a stochastic nature, a subjective proba-
bilistic model description may be quite arbitrary. For example, a distribution parameter may be known mere-
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ly in the form of bounds. Any prior distribution which is limited to these bounds would then be an option for 
modeling. But the selection of a particular model would introduce unwarranted information that cannot be 
justified sufficiently. Even the assumption of a uniform distribution, which is commonly used in those cases, 
ascribes more information than is actually given by the bounds. This situation may become critical if no or 
only very limited data are available for a model update. The initial subjectivity is then dominant in the post-
erior distribution and in the final result. If these results, such as failure probabilities, determine critical deci-
sions, one may wish to consider the problem from the following angle. 

If several probabilistic models are plausible for the description of a problem, and no information is 
available to assess the suitability of the individual models or to relate their suitability with respect to one 
another, then it may be of interest to identify the worst case for the modeling rather than to average over all 
plausible model options with arbitrary weighting. The probabilistic analysis is carried out conditional on 
each of many particular probabilistic models out of the set of plausible models. In reliability assessment, this 
implies the calculation of an upper bound for the failure probability as the worst case. This perspective can 
be extended to explore the sensitivity of results with respect to the variety of plausible models, that is, with 
respect to a subjective model choice. A mathematical framework for an analysis of this type has been estab-
lished with imprecise probabilities (see Walley 1991). Applications to reliability analysis (Kozine and Fili-
monov 2000, Möller et al. 2003, Utkin 2004) and to sensitivity analysis (Ferson and Tucker 2006, Hall 2006) 
have been reported. This intuitive view, however, is by far not the entire motivation for imprecise probabili-
ties (see Klir 2006). Imprecise probabilities are not limited to a consideration of imprecise distribution para-
meters. They are also capable of dealing with imprecise conditions and dependencies between random va-
riables and with imprecise structural parameters and model descriptions. They allow statistical estimations 
and tests with imprecise sample elements. Results from robust statistics in form of solution domains of statis-
tical estimators can be considered directly and appropriately (Augustin and Hable 2010). 

In this paper, the implementation of intervals and fuzzy sets as parameters of probabilistic models is 
discussed in the context of proposed concepts of imprecise probabilities. A structural reliability analysis is 
employed to illustrate the effects in an example. 

 

PROBABILISTIC MODELS WITH IMPRECISE PARAMETERS 
In engineering analyses, parameters of probabilistic models are frequently limited in precision and are 

only known in a coarse manner. This situation can be approached with different mathematical concepts. First, 
the parameter can be considered as uncertain with random characteristics, which complies with the Bayesian 
approach. Subjective probability distributions for the parameters are updated by means of objective informa-
tion in form of data. The result is a mix of objective and subjective information – both expressed with proba-
bility. Second, the parameter can be considered as imprecise but bounded within a certain domain, where the 
domain is described as a set. In this manner, only the limitation to some domain and no further specific cha-
racteristics are ascribed to the parameter, which introduces significantly less information in comparison with 
a distribution function as used in the Bayesian approach. Imprecision in the form of a set for a parameter 
does not migrate into probabilities, but it is reflected in the result as a set of probabilities which contains the 
true probability. Intervals and fuzzy sets can thus be considered as models for parameters of probability dis-
tributions. 

An interval is an appropriate model in cases where only a possible range between crisp bounds  xl  
and  xr  is known for the parameter  x, and no additional information concerning value frequencies, prefe-
rence, etc. between interval bounds is available nor any clues on how to specify such information. Interval 
modeling of a parameter of a probabilistic model connotes the consideration of a set of probabilistic models, 
which are captured by the set of parameter values 

 
                      (1) 
 

    I l rX x x x , x . 
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This modeling corresponds to p-box approach (Ferson and Hajagos 2004) and to the theory of interval 
probabilities (Weichselberger 2000). Events  Ei  are assessed with a range of probability, 

      0 1l i r iP E ,P E , , which is directly used for the definition of interval probability, denoted as IP, as 
follows, 

 
 
                      (2) 
 

In Eq. (2),  P  is the power set on the set  of elementary events . This definition complies with tradi-
tional probability theory. Kolmogorov's axioms and the generation scheme of events are retained as defined 
in traditional probability theory (see also Yamauchi and Mukaidono 1999). Traditional mathematical statis-
tics are applicable for quantification purposes. In reliability analysis with interval probabilities, the parameter 
interval  XI  is mapped to an interval of the failure probability, 

 
                (3) 
 
Scrutinizing the modeling of parameters as intervals shows that an interval is a quite crude expression 

of imprecision. The specification of an interval for a parameter implies that, although a number’s value is not 
known exactly, exact bounds on the number can be provided. This may be criticized because the specifica-
tion of precise numbers is just transferred to the bounds. Fuzzy set theory provides a suitable basis for relax-
ing the need for precise values or bounds. It allows the specification of a smooth transition for elements from 
belonging to a set to not belonging to a set. Fuzzy numbers are a generalization and refinement of intervals 
for representing imprecise parameters. The essence of an approach using fuzzy numbers that distinguishes it 
from more traditional approaches is that it does not require the analyst to circumscribe the imprecision all in 
one fell swoop with finite characterizations having known bounds. The analyst can now express the available 
information in form of a series of plausible intervals, the bounds of which may grow, including the case of 
infinite limits. This allows a more nuanced approach compared to interval modeling. 

Fuzzy sets provide an extension to interval modeling that considers variants of interval models, in a 
nested fashion, in one analysis. A fuzzy set X  of parameter values can be represented as a set of intervals  
XI, 

 
 
                      (4) 
 
 

which is referred to as -discretization; see Figure 1 (Zimmermann 1992).  In Eq. (4),  X  denotes an 
-level set of the fuzzy set X , and  (.)  is the membership function. This modeling applied to parame-
ters of a probabilistic model corresponds to the theory of fuzzy random variables and to fuzzy probability 
theory. Detailed discussions are provided, for example, in (Kruse and Meyer 1987, Li et al. 2002, Gil et al. 
2006, Beer 2009, Viertl 1996, Viertl 2011). The definition of a fuzzy random variable refers to imprecise ob-
servations as outcome of a random experiment. A fuzzy random variable Y  is the mapping 

 
                      (5) 

 
with  YF  being the set of all fuzzy sets on the fundamental set Y, whereby the standard case is Y = Rn.  
The pre-images of the imprecise events described by  YF  are elements of a traditional probability space 

 , , P S . This complies with traditional probability theory and allows statistics with imprecise data (Kruse 
and Meyer 1987, Bandemer and Näther 1992, Viertl 1996, Viertl 2011). As a consequence of Eq. (5), para-

 ,  .I f I f f f l f rX P P P P P    

    
    

 0 1  .

IP : E I with

E , I a,b a,b a b







      P

    
 

,

,  ,

        0,1

IX X

X X X X



    





 

 

 
 
 
 
 



 Y:   Y F

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS076) p.1301



meters of probabilistic models, including descriptions of the dependencies and distribution type, and proba-
bilities are obtained as fuzzy sets. This builds the relationship to the p-box approach and to the theory of in-
terval probabilities. A representation of a fuzzy probability distribution function of a fuzzy random variable 
Y  with aid of -discretization leads to interval probabilities     ,l rF y F y   for each -level as one 
plausible model variant, 

 
 
                      (6) 
 

 
As depicted in Figure 1, in a reliability analysis, the fuzzy set X  of parameter values is mapped to a fuzzy 
set of the failure probability, 

 
                      (7) 

 
 
 
 
 
 
 
 
 
 
Figure 1.  Relationship between fuzzy parameters and failure probability. 
 

The membership function serves only instrumentally to summarize various plausible interval models in 
one embracing scheme. The interpretation of the membership value    as epistemic possibility, which is 
sometimes proposed may be useful for ranking purposes, but not for making critical decisions. The impor-
tance of fuzzy modeling lies in the simultaneous consideration of various magnitudes of imprecision at once 
in the same analysis.   

 The features of a fuzzy probabilistic analysis can be utilized to identify sensitivities of the failure prob-
ability with respect to the imprecision in the probabilistic model specification; see Figure 1. Sensitivities of  
Pf  are indicated when the interval size of  Pf  grows strongly with a moderate increase of the interval 
size of  X  of the parameters. If this is the case, the membership function of  fP  shows outreaching or 
long and flat tails. An engineering consequence would be to pay particular attention to those model options  
X, which cause large intervals  Pf  and to further investigate to verify the reasoning for these options and 
to possibly exclude these critical cases. 

 A fuzzy probabilistic analysis also provides interesting features for design purposes. The analysis 
can be performed with coarse specifications for design parameters and for probabilistic model parameters. 
From the results of this analysis, acceptable intervals for both design parameters and probabilistic model pa-
rameters can be determined directly without a repetition of the analysis; see Figure 1. Indications are pro-
vided in a quantitative manner to collect additional specific information or to apply certain design measures 
to reduce the input imprecision to an acceptable magnitude. This implies a limitation of imprecision only to 
those acceptable magnitudes and so also caters for an optimum economic effort. For example, a minimum 
sample size or a minimum measurement quality associated with the acceptable magnitude of imprecision can 
be directly identified. Further, revealed sensitivities may be taken as a trigger to change the design of the sys-
tem under consideration to make it more robust. Beer and Liebscher (2008) describe a related method for 

 .fX P 

       
      

    
 ,

,  .
 0,1

l rF y F y F y
F y F y F y

F y

  

 




  




  

  
 
  





acceptable
parameter 
interval 

mapping
 

Eq. (7) 

acceptable Pf 

sensitivity
of Pf w.r.t. x 

µ(Pf) 

Pf 00 



µ(x) 
11 

x

X 
~ Pf

~

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS076) p.1302



designing robust structures in a pure fuzzy environment. These methods can also be used for the analysis of 
aged and damaged structures to generate a rough first picture of the structural integrity and to indicate further 
detailed investigations to an economically reasonable extentexpressed in form of an acceptable magnitude 
of input imprecision according to some -level. 

 

EXAMPLE 
To illustrate this approach, we use an example reliability analysis for a reinforced concrete frame 

(Möller et al. 2003) shown in Figure 2. The structure is loaded by its dead weight, a small horizontal load  
PH, and the vertical loads  PV0  and  p0  which are increased with the factor  ν  until global structural 
failure is attained. For the purpose of demonstration, only the load factor  ν  is introduced as a random va-
riable with an extreme value distribution of Ex-Max Type I with mean m  and standard deviation  . Im-
precision of the probabilistic model is modeled with triangular fuzzy numbers 5.7,5.9,6.0m   and 

0.08,0.11, 0.12  . In addition, the rotational stiffness of the springs at the column bases is modeled as 
a triangular fuzzy number 5,9,13k  MNm/rad

 
to take account of the only vaguely known soil properties. 

Based on this input information, the fuzzy reliability index   shown in Figure 3 is calculated. 
The result spreads over a large range of possible values for  β. The shaded part of 

 
does not comp-

ly with the safety requirements. This means that a sufficient structural reliability is not ensured when the pa-
rameters are limited to the plausible ranges for   = 0. In a traditional reliability analysis, using crisp as-
sumptions for the parameters out of their plausible range such as the values associated with the membership  
µ = 1, this critical situation is not revealed. So far, the results from p-box approach or from interval proba-
bilities would lead to the same conclusions. As an additional feature of fuzzy probabilities, it can be observed 
that the left tail of the membership function of   slightly tends to flatten towards small values. This indi-
cates a slight sensitivity of  β  with respect to imprecision of the fuzzy input when this grows in magnitude. 
So one may wish to reduce the input imprecision to a magnitude which is associated with the steeper part of 
the membership function of  β. In Figure 3, the part  µ(β)  0.4  is a reasonable choice in this regard. Fur-
ther, the result β=0.4 = [3.935, 6.592] for  µ(β)  0.4 =   (according to the definition of -level sets) satis-
fies the safety requirement  β=0.4  3.8. That is, a reduction of the imprecision of the fuzzy input parameters 
to the magnitude on -level   = 0.4  would lead to an acceptable reliability of the structure despite the 
remaining imprecision in the input. For example, a collection of additional information can be pursued to 
achieve the requirements k  [6.6, 11.4] MNm/rad = k,=0.4,   , 0.45.78,5.96m m    , and 

  , 0.40.092,0.116      . If this cannot be achieved for one or more parameters, the fuzzy analysis can 
be repeated with intervals for the parameters with non-reducible imprecision and with fuzzy sets for the pa-
rameters with reducible imprecision to separate the effects. The evaluation of the results then leads to a solu-
tion with proposed reduction of the imprecision only of those parameters for which this is possible. In this 
manner, it is also possible to explore sensitivities of the result  β  with respect to the imprecision of certain 
groups of input parameters or of individual input parameters. The repetition of the fuzzy analysis for these 
purposes can be avoided largely when a global optimization technique is used for the fuzzy analysis. This 
type of fuzzy analysis leads to a set of points distributed over the value ranges of the fuzzy input parameters 
and associated with results    . For each construction of membership functions for the fuzzy input para-
meters, it is then immediately known which points belong to which -level so that a discrete approximation 
of a result can be obtained directly without a repeated analysis. Repetition of the analysis is then only re-
quired for a detailed verification. 
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Figure 2.  Reinforced concrete frame, structural model, and loading. 
 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 3.  Fuzzy reliability index and evaluation against safety requirement. 
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