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1. Introduction 

The prevailing procedures for exploratory factor analysis are underlain by the random factor model 
(Anderson & Rubin, 1956) in which factor scores are treated as random latent variables. Using x for a p × 1 
observation vector whose expectation E(x) equals the p × 1 zero vector 0p, the model is written as 

    x = Λf + Ψu .                                      (1) 

Here, Λ and Ψ are unknown fixed parameter matrices, while f and u are random vectors: Λ is a p-variables × 
m-factors loading matrix and Ψ is a p × p diagonal matrix, whereas f (m × 1) contains common factor scores, 
and u (p × 1) is filled with standardised errors. The elements of u and the diagonal ones of Ψ2 are called 
unique factor scores and unique variances, respectively. It is assumed that E(f) = 0m, E(ff′) = Im, E(u) = 0p, 
E(uu′) = Ip, and E(fu′) = mOp, with Im the m × m identity matrix and mOp the m × p matrix of zeros. The 
covariance matrix of x is then expressed as E(xx′) = ΛΛ′ + Ψ2, which is fitted to its sample counterpart S = 
(n−1)−1X′X, where X is the n × p data matrix filled with the realizations of x′ obtained from n individuals and 
is column-centered as 1n′X = 0p′ with 1n the n × 1 vector of ones. Popular procedures for fitting E(xx′) to S 
are unweighted least squares (ULS), weighted least squares (WLS), and maximum likelihood (ML) 
procedures, in which   

hULS(Λ,Ψ2S) = ||S − ΛΛ′ − Ψ2||2 = tr(S − ΛΛ′ − Ψ2)2                     (2) 

hWLS(Λ,Ψ2S) = tr{(S − ΛΛ′ − Ψ2)S−1},                               (3) 

hML (Λ,Ψ2S) = log|ΛΛ′+Ψ2|+tr{rS(ΛΛ′+Ψ2)−1},                        (4) 

are, respectively, minimised over Λ and Ψ. Here, (4) is proportional to the negative log likelihood derived 
under the multivariate normality assumption for f and u, with r = (n−1)/n. I refer to the minimisation of (2), 
(3), or (4) as a random factor analysis (FA) procedure in this paper.  
    A factor analysis procedure very different from the random FA has recently been presented by de Leeuw 
(2004) and Henk, A. L. Kiers in the University of Groningen and been elaborated by Unkel and Trendafilov 
(2010a), where the presentation by Kiers has been described in Sočan (2003). In this procedure, common and 
unique factor scores are treated rather as unknown fixed parameters and its loss function is expressed as   

             fULS(Z, Λ, ΨX) = ||X − FΛ′ − UΨ||2 = ||X − ZA′||2 ,                    (5) 

where F is an n-individuals × m-factors matrix of common factor scores, U (n × p) contains unique factor 
scores, Z = [F, U] is the n × r matrix containing both factor scores, and A (p × r) = [Λ,Ψ] with r = p + m. 
Function (5) is minimised over Z, Λ, and Ψ subject to  

                           1n′Z = 0q′ ,                                       (6) 
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n
1 Z′Z = Iq .                                        (7) 

It should be noted that the constraints (6) and (7) summarize the conditions 1n′F = 0m′, n−1F′F = Im, 1n′U = 0p′, 
U′U = Ip, and n−1F′U = mOp which correspond to the assumptions for f and u in the random FA. I refer to the 
above minimisation as fixed FA, since factor scores are treated as fixed parameters to be estimated. A feature 
of the fixed FA is to estimate Ψ, Λ and factor score matrix Z simultaneously. On the other hand, in the 
random FA where only Ψ and Λ are estimated, we must resort to a two stage procedure if F and U are needed 
to be obtained: they are obtained using the resulting Ψ and Λ in a post hoc manner. The fixed FA can be 
viewed as an extension of the principal component analysis (PCA) formulated as minimizing ||X − FΛ′||2 

over F and Λ: this function is extended as (5) by introducing UΨ in the fixed FA.  
   The algorithm for the fixed FA consists of alternately iterating the following three steps; [A] the 

minimisation of (5) over Z subject to (6) and (7) while keeping Λ and Ψ fixed, [B] minimising (5) over Λ 
with Z and Ψ kept fixed, and [C] the minimisation of (5) over the diagonal elements of Ψ with Z and Λ fixed. 
The algorithm is simple in that the problem in each step can be solved explicitly: the solutions in [A], [B], 
and [C] are given by  

                     Z = [F, U] = LK ′~~n ,                                  (8) 

                    Λ = FX′
n
1 ,                                         (9) 

                     Ψ =
n
1 diag(X′U) ,                                    (10) 

where K~  and L~  follow from the singular value decomposition (SVD) of XA defined as XA = LK ′~~~
Λ  

with  K~  and L~  being column-orthonormal and Λ~  a q × q diagonal matrix and (de Leeuw, 2004; Sočan, 
2003; Unkel & Trendafilov, 2010a). Though Z in (8) cannot be uniquely determined since the rank of XA 
does not exceed p < q and the q − p diagonal elements of Λ~  are zeros, the algorithm allows (5) to converge 
to a minima by setting Z at a matrix in the set of the optimal Zs.  
    Unkel and Trendafilov (2010a) have described that the fixed FA is a promising approach in the 
following points. First, in the former, all model unknowns can be simultaneously estimated. Second, Ψ is 
estimated in the fixed FA and thus the improper solutions are never given in which the estimates of unique 
variances (i.e., the diagonal elements of Ψ2) include a negative value, whereas such solutions are 
encountered in the random FA with Ψ2 estimated. Third, the algorithm for the fixed FA facilitates the 
application of exploratory factor analysis, because, as well as PCA, it is based on computationally well-
known and efficient numerical procedure of the SVD of data matrices. Unkel and Trendafilov (2010b) 
further have utilized the merits of the fixed FA to develop a its robust version. However, some problems are 
thought to remain to be studied in the fixed FA. Among them, the problems concerning [1] scale invariance, 
[2] the matrix necessary for analyses, [3] the estimation of factor scores, and [4] exactness in parameter 
estimation are focused on in this paper. 

The first problem is that the loss function (5) for the fixed FA is not scale invariant with ||X −FΛ′ − 
UΨ||2 ≠ ||XD −FΛ′D − UΨD||2 for a diagonal matrix D ≠ Ip; an original data set and its standardised version 
lead to different solutions. Though ULS function (2) is also not scale invariant, the WLS and ML loss 
functions (3) and (4) in the random FA are scale invariant with hWLS(Λ,Ψ2S) = hWLS(DΛ, DΨ2DDSD) and 
hML(Λ,Ψ2S) = hML(DΛ, DΨ2DDSD) (e.g., Yanai & Ichikawa, 2007). In this paper, I extend (5) into a 
weighted least squares (WLS) function which has the scale invariant property if the weights are chosen 
suitably and also includes (5) as a special case. I refer to the approach with the WLS function as a WLS fixed 
FA procedure and the minimisation of (5) as the ULS fixed FA procedure.  

Second, it seems to be a drawback that the fixed FA apparently seems to need the original data matrix X 
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of a larger size than its covariance matrix S, which suffices for estimating Λ and Ψ in the random FA. In this 
paper, however, the fact is shown that only a covariance matrix is sufficient for minimising loss function (5) 
and its WLS version to be presented. As seen in Section 2.2, this fact is underlain by that the covariance 
matrix between variables and factors is uniquely determined. 

Third, the factor score matrix Z = [F, U] cannot be uniquely determined in the ULS fixed FA and also in 
its WLS version. We must thus choose Z among multiple candidates of its estimators, but how to choose it 
has not been mentioned in the previous literatures (de Leeuw, 2004; Sočan, 2003; Unkel & Trendafilov, 
2010). I thus propose a choice of Z. The fourth problem is to answer the question whether the parameter 
matrices (Λ and Ψ) are estimated more exactly in the fixed or random FA. Further, factor scores Z = [F, U] 
can also be obtained using two stage procedures in the random FA and it is thus included in the problem to 
compare the FA procedures in the exactness of factor score estimation.   

In the next section, I detail the WLS fixed FA procedure with answering the first, second and third 
problems, which is followed by the Section 3 where I report the simulation study concerning the fourth 
problem.  
   
2. Weighted least squares fixed factor analysis 

The loss function to be minimised in the proposed WLS fixed FA is introduced in Section 2.1. 
Properties of the factor score matrix Z = [F, U] that minimises the WLS function are discussed in Section 2.2, 
which leads to the update formula of A = [Λ, Ψ] in Section 2.3. There, we can find that only a sample 
covariance matrix suffices for updating A and minimizing the loss function. The iterative algorithm for the 
minimization is summarized in Section 2.4, and an estimator of Z is presented in Section 2.5.     
   
2.1. Loss function 

I propose a WLS fixed FA procedure, in which a WLS loss function  

f(Z, Λ, ΨX) = tr(X− ZA′)W−1(X − ZA′)′= ||X − ZA′|| 2
1−W = ||X − FΛ′ − UΨ|| 2

1−W ,         (11) 

is minimised over Z = [F, U] and A = [Λ, Ψ] subject to conditions (6) and (7). For matrix W, I choose  

W = S = XX′
−1
1

n
 .                                    (12) 

Then, function (11) is scale invariant with f(Z, DΛ, DΨXD) = ntr(XD − ZA′D)[(n−1)−1DX′XD]−1(XD − 
ZA′D)′ = tr(X − ZA′)S−1(X − ZA′)′ = f(Z, Λ, ΨX). However, I continue to use the symbol W (not S) to 
allow the following discussions to include the case of the ULS approach with W set at Ip.  
 
2.2. Properties of Optimal Factor Scores 
    Let us consider the optimal factor score matrix Z = [F, U] that minimises (11) subject to (6) and (7) for 
given A = [Λ, Ψ]. Using c for the part irrelevant to Z in (11), it is rewritten as c − trX′ZA′W−1. This 
minimisation thus amounts to maximizing g(Z) = trX′ZA′W−1 = trZ′XW−1A over Z. The maximization 
under (6) and (7) is achieved using the SVD of n−1/2XW−1A (n × q) defined as 

n
1 XW−1A = KΘL′ = [K1, K2] 





mm O
1Θ






′
′
2

1
L
L = K1Θ1L1′ .                  (13) 

Here, rank(XW−1A) = p < q, Θ1 is the p × p positive definite diagonal matrix, Θ is the q × q diagonal matrix 
whose diagonal blocks are Θ1 and mOm, and K = [K1, K2] (n × q) and L = [L1, L2] (q × q) satisfy 

      K′K = L′L = 





′
′
2
1

K
K [K1, K2] = 




′
′
2
1

L
L [L1, L2] = Iq ,                       (14) 

with K1, K2, L1, and L2 being n × p, n × m, q × p, and q × m matrices, respectively. We have the inequality  
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g(Z) = trZ′XW−1A = tr n1/2Z′KΘL′ = tr nL′(n−1/2Z)′KΘ ≤ trΘ = trΘ1 .              (15) 

(ten Berge, 1983), and the upper bound trΘ1 is attained for 

Z = n KL′ = n K1L1′ + n K2L2′                          (16) 

under (7). Obviously, K2L2′ and Z cannot be uniquely determined. These facts with (13) - (16) for the case 
with W = Ip have been shown in de Leeuw, 2004, Sočan, 2003, and Unkel and Trendafilov (2010a) .  

Although in those literatures it has not been described that (16) satisfies not only (7) but also the other 
condition (6), this fact is shown as follows. Since (13) implies n1/2K1 = XW−1AL1Θ1

−1, the first term in the 
right-hand side of (16) can be expressed as 

                         n K1L1′= XW−1AL1Θ1
−1L1′ ,                            (17) 

which implies 1n′K1 = 0p. The non-unique second term n1/2K2L2′ can be chosen such that 1n′K2 = 0m as seen 
in Appendix. Using 1n′K1 = 0p′ and 1n′K2 = 0m′ in (16), we can find that it satisfies condition (6).   

It is an important fact for our proposed algorithm that, though Z is not unique, a p-variables × q-factors 
covariance matrix n−1X′Z is uniquely determined as 

n
1 X′Z =

n
1 X′[F, U] = W′A′+L1Θ1L1′ ,                         (18) 

if Θ1 has distinct diagonal elements and A (p × q) is of full-row rank which implies AA+ = Ip. This fact is 
proved as follows. Using AA+ = Ip and (13) we have n−1/2X = n−1/2XW−1AA+W = K1Θ1L1′A+W. This 
equation and (16) imply that n−1X′Z = (n−1/2X)′(n−1/2Z) = (W′A′+L1Θ1K1′)(KL′) which leads to (18).  

As seen in the next section, A can be updated using (18), and the L1 in (18) can be obtained from the 
eigenvalue decomposition (EVD) defined as 

                     rA′W−1SW−1A = L1Θ1
2L1′ ,                             (19) 

even if we do not have the original data matrix X but only the covariance matrix S. 
 
2.3. Update of Loadings and Unique Variances   

First, let us consider minimising function (11) over Λ while keeping Z = [F, U] and Ψ fixed. Using the 
conditions n−1F′F = Im and n−1F′U = mOp implied by (7), function (11) is rewritten as c# − 2trX′FΛ′W−1 + n 
trΛΛ′W−1 with c# the constant irrelevant to Λ. We can thus find that (11) is minimized when Λ equals the 
matrix n−1X′F, i.e., (9), which consists of the first p columns of (18) and does not depend on Ψ. Next, let us 
consider minimising (11) over diagonal matrix Ψ with Z and Λ kept fixed. Using n−1U′U = Ip and n−1F′U = 
mOp, (11) is rewritten as c* − 2tr[diag(W−1X′U)Ψ2] + n tr[diag(W−1)Ψ2] with c* expressing the part irrelevant 
to Ψ and diag(W−1) denoting the diagonal matrix whose diagonal elements are those of W−1. We can thus 
find that the minimisation is attained for Ψ =diag(W−1)−1diag(W−1V), where V = n−1X′U consists of the last 
m columns of (16) and this Ψ does not depend on Λ.  

The above two results show that the update of A = [Λ, Ψ] by 

Λ =
n
1 X′F = W′AOLD

+′L1Θ1L1′H[m] ,                             (20) 

Ψ =diag (W−1)−1diag(W−1

n
1 X′U) = diag (W−1)−1diag(W−1[W′AOLD

+′L1Θ1L1′] Hp)          (21) 

minimises (11) for given Z, where H[m]= [Im, mOp]′ (q × m), Hp
 = [pOm, Ip,]′ (q × p), and AOLD denotes the 

matrix A before the update.      
The resulting Λ and Ψ allow us to express the loss function value as  
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f(Z, Λ, Ψ) = n tr{r S − (ΛΛ′ + Ψ2)}W−1 ,                        (22) 

which is derived by the use of (20) and (21) in the function (11) expanded as tr(X′X+nΛΛ′+nΨ2 −2X′FΛ′− 
2X′UΨ)W−1. The function value in (22) is standardized into 

fs(Z, Λ, Ψ) = 1tr
),,(

−SW
Z

nr
f ΨΛ  ,                              (23) 

which takes a value of zero to one. 
 
2.4. Iterative Algorithm 
    Given S, loss function (11) can be minimised subject to (6) and (7) simply by iterating the update with 
(20) and (21), without updating Z. The iterative algorithm for the minimisation thus follows the next steps: 

Step 1. Initialize A = [Λ, Ψ].  
Step 2. Perform EVD in (19) and obtain (18). 
Step 3. Update A = [Λ, Ψ] with (20) and (21). 
Step 4. Finish if the decrease in (23) from the previous step is less than a constant ε; 

otherwise, go back to Step 2.  

In this paper, ε = 0.17 is used, and the EVD of the covariance matrix, i.e., S = BΦ2B′, is used for initializing 
Λ and Ψ as BmΦm and diag(S − BmΦm

2Bm′)1/2, respectively, where the diagonal elements of diagonal matrix Φ 
is arranged in descending order, B′B = Ip, Bm containing the first m columns of B, and Φm the first m × m 
diagonal block of Φ.  
 
2.5. Factor Score Estimator 

We can obtain factor score matrix Z = [F, U] after the steps in Section 2.4. However, the optimal Z 
expresses as (16), i.e., Z = n−1/2K1L1′ + n−1/2K2L2′ is not unique: though the first term n−1/2K1L1′ is unique, 
the second n−1/2K2L2′ is the product of any K2 and L2 satisfying (14). Though it might be a strategy to impose 
a constraint onto K2L2′ such that it is uniquely determined, a reasonable constraint is difficult to find. I thus 
choose the term 

                      Ẑ  = n K1L1′                                    (24) 

determined uniquely in (16) as the estimator of Z. This has one drawback, but two kinds of optimality.  
The drawback is that (24) does not satisfy (7) with n−1 Ẑ ′ Ẑ  = L1L1′≠ Iq since the rank of Ẑ  is p < q, 

though (24) satisfies (6). One of the two optimal properties is that (24) attains the upper bound of (15) with 
g( Ẑ ) = tr Ẑ ′XW−1A = trL1K1′KΘL′ = trΘ1. The other property is that (24) is the reduced rank 
approximation of the factor score matrix Z of rank q; the n × q matrix Y of rank p < q that minimises 

η(Y) = ||Y − Z||2 = ||Y− n KL′||2                            (25) 

is given by (24) with η(Y) ≥ η( Ẑ ) for any n × q matrix Y.  
 
3. Simulation study 
    I performed a simulation study to compare random and fixed FA procedures in how well true loadings, 
unique variances, and factor scores can be recovered.  
 
3.1. Procedures 

The underlying models are different between the random FA and the fixed FA; factor scores are treated 
as random variables in the former, but as fixed parameters in the latter. However, comparisons of both types 
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of FA are difficult unless data sets are synthesized with the same model. I thus choose to use the random 
factor model (1), as it seems to be reasonable that a new approach (the fixed FA) is tested by a prevailing one 
(the model for the random FA), as compared to testing a prevailing approach by a new one, although this 
choice is thought disadvantageous for the fixed FA.    

A thousand data sets satisfying (1) were generated by replicating the following procedures: [1] The sizes 
of matrices were randomly chosen: I drew m from DU(1, 5), p from DU(4m, 8m), and then n from DU(8p, 
12p), with DU(a, b) denoting the discrete uniform distribution of the integers from a to b. [2] Λ was filled 
with u[−1.0, 1.0] and the diagonal elements of Ψ were filled with u ]7.0,1.0[ , where u[α, β] denotes a variable 
distributed uniformly over the range from α and β; [3] The rows of data matrix X were filled with the x′ 
satisfying (1), i.e., x = Λf + Ψu, where f was drawn from Nm(0m, Im) and u was drawn from Np(0p, Ip) 
independently of f, with Nm(0m, Im) denoting the m-variate normal distribution whose mean vector and 
covariance matrix are 0m and Im. Further, the n sets of f′ and those of u′ constituted the rows of F and U, 
respectively.   

The reason for randomly choosing matrix sizes in the above step [1] was to cover widely usual factor 
analysis cases where the number of n, p, and m are proportional to each other with n much larger than p and 
p > m. Each data matrix X was standardized so that column averages and variances were zeros and ones, 
respectively, to be matched to the usual application cases. Thus, the loading matrix and the diagonal matrix 
including unique variances to be recovered were diag(Σ)−1/2Λ and diag(Σ)−1Ψ2, respectively, with Σ = ΛΛ′ 
+Ψ2. I use just X, Λ and Ψ2 for the standardised X, diag(Σ)−1/2Λ, and diag(Σ)−1Ψ2, respectively. 

Each X was analyzed by the following five procedures; the ULS random FA in which Harman and 
Jones’ (1966) MINRES algorithm was used for minimising (2), the WLS random FA in which Lee’s (1978) 
algorithm was used for minimizing (3), the ML random FA in which Rubin and Thayer’s (1982) EM 
algorithm was used for minimising (4), the ULS fixed FA for minimising (5) or (11) with W = Ip, and the 
WLS fixed FA for minimising (11) with W = S.  

In the random FA procedures, Λ and Ψ2 are initialized in the same manner as described in Section 2.4, 
and the iteration was stopped when the changes in hULS(Λ,Ψ2S)/trS2, hWLS(Λ,Ψ2S)/p, and 
hML(Λ,Ψ2S)/(|rS|+p) became less than 0.17 in the ULS, WLS, and ML procedures. Using the resulting Λ and 
Ψ2, I obtained the regression estimate of common factor score matrix F = XΨ−2Λ(Im + Λ′Ψ−2Λ)−1 which gave 
unique factor score matrix U = (X − FΛ′)Ψ−1 subsequently.  
 
3.2. Results 
    The ULS and WLS random FA procedures yielded non-positive Ψs for 14 and 12 data sets, respectively, 
among 1000 ones, where the non-positive Ψ refers to the Ψ with at least one diagonal element equal to or 
less than 0.0. A reason for the ML random FA procedure not giving such a solution is that the data were 
completely matched to the model underling this procedure, that is, (1) with the normality assumption. Also, 
the fixed FA never gave a non-positive Ψ, which shows an advantage of the fixed FA. The solutions with the 
non-positive Ψ were removed, that is, the 986 (=1000 −14) and 988 (=1000 −12) sets of solutions were 
considered for ULS and WLS random FA, respectively, in the following procedures. 
    As an index of the recovery of true matrices, I use a standardized similarity defined as 

 SS( M̂ ,M) = 1−
22

2

ˆ

ˆ5.0

MMMM

MM

−+−

−
,                          (26) 

where M̂  (N × M) is the estimated counterpart of true matrix M and M is filled with the average of the 
NM elements in 0.5( M̂ +M) (Adachi, 2011). Index (26) takes a value of zero to one and attains the upper 
bound one for M̂ = M. Table 1 shows the quartiles of the standardized similarities for loadings, unique 
variances, and factor scores, i.e., SS( Λ̂ , Λ), SS( 2Ψ̂ 1p, Ψ21p), SS( F̂ , F), and SS( Û , U), in the solutions for 
each procedure. The quartiles of CC( Λ̂ , Λ), CC( 2Ψ̂ 1p, Ψ21p), CC( F̂ , F), and CC( Û , U) are also shown, 
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with CC( Λ̂ , Λ) denoting the product moment correlation coefficient between vec Λ̂  and vecΛ, as the 
coefficient is familiar and thus easy to capture its largeness/smallness.  
    In Table 1 we find that the exactness in the recovery of loading matrix Λ was equivalent between five 
procedures and that for unique variance Ψ21p was also almost equivalent except for the WLS random FA 
with lower quartiles. The fixed FA procedures are found to be inferior to the random FA ones in the recovery 
of factor scores F and U, which is a little surprising considering that the scores are estimated in the fixed FA, 
while they are obtained in a post-hoc manner in the random FA. It is conjectured that this result may be 
caused from the use of the data synthesizing procedure disadvantageous for the fixed FA or be due to 
undesirable properties of the estimator (24). However, the recovery of F and U by the fixed FA procedures is 
also thought satisfactory in that the quartiles of the standardised similarity exceeded 0.9 and those of 
correlation coefficient were sufficiently high.  
 
4. Conclusions 
    In this paper, the fixed factor analysis (FA) was focused on in which the matrices of common and 
unique factor scores, loadings, and unique variances are treated as fixed parameters, and an weighted least 
squares (WLS) procedure for the fixed FA was presented which has the scale invariant property and includes 
the existing unweighted least squares (ULS) procedure as a special case. Further, in the fixed FA, as well as 
in the random FA, loadings and unique variances are shown to be estimated only with a sample covariance 
matrix, even if its original data matrix is not given. After the estimation, common and unique factor scores 
can be obtained using the data matrix, though the scores cannot be uniquely determined. It was proposed to 
use the reduced rank approximation of the optimal score matrix as its estimator.   

 The simulation study showed the WLS and ULS fixed FA procedures recover true loadings and unique 
variances as well as the prevailing random FA procedures, in spite of that the data were synthesized with the 
model for the random FA. This fact establishes that the new fixed FA can be included in a family of factor 
analysis procedures. However, the study also showed that the recovery of factor scores by the fixed FA, 
though satisfactory, is a little worse than the recovery by the random FA. This result suggests that factor 
score estimators different from reduced rank approximation (24) should be considered.    

Finally, I must discuss that the fixed FA can also be viewed as a constrained principal component 
analysis (PCA), although the fixed FA was described as an extended PCA in the title and Section 1. That is, 
PCA can also be formulated as minimizing the function (5), i.e., ||X − FΛ′ − UΨ||2, for the ULS fixed FA, 
over F, Λ, U, and Ψ subject to the constraints (6) and (7) with n−1U′U = Ip deleted. The solution of FΛ′ and 
UΨ is given by the SVD of X and the loss function value attains zero with the rank of the resulting UΨ being 

 

Table 1. The 1st, 2nd, and 3rd quartiles of the standardised similarities (SS) and correlation coefficients 
(CC) for Λ, Ψ21p, F, and U resulting from random and fixed FA procedures.  

Λ: Loadings  Ψ2: Unique Variances F: Common Factors  U: Unique Factors In- 
dex 

Fac- 
tor 

Proce- 
dure 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
ULS 0.996  0.998  0.998 0.968 0.982 0.989 0.970 0.981 0.987  0.941  0.951  0.959 
WLS 0.996  0.998  0.998 0.909 0.940 0.958 0.969 0.981 0.987  0.943  0.952  0.959 Ran- 

dom 
ML 0.996  0.998  0.998 0.969 0.983 0.989 0.969 0.981 0.987  0.941  0.951  0.959 
ULS 0.996  0.998  0.998 0.966 0.982 0.989 0.959 0.979 0.986  0.918  0.929  0.939 

SS 

Fixed 
WLS 0.996  0.998  0.998 0.943 0.964 0.977 0.960 0.980 0.987  0.918  0.929  0.939 
ULS 0.993  0.996  0.997 0.991 0.994 0.996 0.942 0.964 0.974  0.888  0.906  0.921 
WLS 0.994  0.996  0.997 0.987 0.992 0.994 0.942 0.964 0.975  0.886  0.905  0.919 Ran- 

dom 
ML 0.993  0.996  0.997 0.991 0.994 0.996 0.941 0.963 0.974  0.887  0.906  0.921 
ULS 0.993  0.996  0.997 0.991 0.994 0.996 0.922 0.960 0.974  0.837  0.859  0.879 

CC 

Fixed 
WLS 0.993  0.996  0.997 0.990 0.994 0.996 0.922 0.960 0.974  0.838  0.860  0.880 
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p − m. In this formulation, the fixed FA can be viewed as a version of PCA in which constraint n−1U′U = Ip is 
added. 
 
Appendix 

We can set K2 = (In − K1
+′K1′)G, with G being a matrix of n × m satisfying 1n′G = 0m and G′(I − 

K1
+′K1′)G = Im. Then, 1n′K2 = 1n′(In − K1

+′K1′)G = 1n′G = 0m follows from that 1n′K1 = 0p implies 1n′K1
+′ = 

0p. 
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ABSTRACT 

In this paper, a weighted least squares procedure for fixed factor analysis was proposed for simultaneously 
estimating common and unique factor scores, loadings, and unique variances. The proposed method, when the weight is 
given by the inverse of a sample covariance matrix, is scale invariant and also includes the existing fixed factor 
analysis procedure for the simultaneous estimation as a special case. Further, it was shown that the least square loss 
function can be minimized by iterating the update of loadings and unique variances, only a sample covariance matrix 
given without a raw data set, in spite of that it is matched to the model part in the function. After the convergence of the 
iteration, the estimates of common and unique factor scores can be obtained using the raw data set. In a simulation 
studies using the data synthesized with the random factor model, the proposed fixed factor analysis procedure was 
shown to recover true loadings and unique variances as well as the prevailing random factor analysis procedures.  
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